--- a/src/kernels/base.rs Tue Aug 01 10:25:09 2023 +0300 +++ b/src/kernels/base.rs Mon Feb 17 13:54:53 2025 -0500 @@ -14,15 +14,22 @@ GlobalAnalysis, Bounded, }; -use alg_tools::mapping::Apply; -use alg_tools::maputil::{array_init, map2}; +use alg_tools::mapping::{ + Mapping, + DifferentiableImpl, + DifferentiableMapping, + Differential, +}; +use alg_tools::instance::{Instance, Space}; +use alg_tools::maputil::{array_init, map2, map1_indexed}; use alg_tools::sets::SetOrd; use crate::fourier::Fourier; +use crate::types::*; /// Representation of the product of two kernels. /// -/// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`] and [`Mapping`]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] @@ -33,32 +40,94 @@ pub B ); -impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> +impl<A, B, F : Float, const N : usize> Mapping<Loc<F, N>> +for SupportProductFirst<A, B> +where + A : Mapping<Loc<F, N>, Codomain = F>, + B : Mapping<Loc<F, N>, Codomain = F>, +{ + type Codomain = F; + + #[inline] + fn apply<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Codomain { + self.0.apply(x.ref_instance()) * self.1.apply(x) + } +} + +impl<A, B, F : Float, const N : usize> DifferentiableImpl<Loc<F, N>> for SupportProductFirst<A, B> -where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, - B : for<'a> Apply<&'a Loc<F, N>, Output=F> { - type Output = F; +where + A : DifferentiableMapping< + Loc<F, N>, + DerivativeDomain=Loc<F, N>, + Codomain = F + >, + B : DifferentiableMapping< + Loc<F, N>, + DerivativeDomain=Loc<F, N>, + Codomain = F, + > +{ + type Derivative = Loc<F, N>; + #[inline] - fn apply(&self, x : Loc<F, N>) -> Self::Output { - self.0.apply(&x) * self.1.apply(&x) + fn differential_impl<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Derivative { + let xr = x.ref_instance(); + self.0.differential(xr) * self.1.apply(xr) + self.1.differential(xr) * self.0.apply(x) } } -impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> +impl<A, B, M : Copy, F : Float> Lipschitz<M> for SupportProductFirst<A, B> -where A : Apply<&'a Loc<F, N>, Output=F>, - B : Apply<&'a Loc<F, N>, Output=F> { - type Output = F; +where A : Lipschitz<M, FloatType = F> + Bounded<F>, + B : Lipschitz<M, FloatType = F> + Bounded<F> { + type FloatType = F; #[inline] - fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { - self.0.apply(x) * self.1.apply(x) + fn lipschitz_factor(&self, m : M) -> Option<F> { + // f(x)g(x) - f(y)g(y) = f(x)[g(x)-g(y)] - [f(y)-f(x)]g(y) + let &SupportProductFirst(ref f, ref g) = self; + f.lipschitz_factor(m).map(|l| l * g.bounds().uniform()) + .zip(g.lipschitz_factor(m).map(|l| l * f.bounds().uniform())) + .map(|(a, b)| a + b) } } +impl<'a, A, B, M : Copy, Domain, F : Float> Lipschitz<M> +for Differential<'a, Domain, SupportProductFirst<A, B>> +where + Domain : Space, + A : Clone + DifferentiableMapping<Domain> + Lipschitz<M, FloatType = F> + Bounded<F>, + B : Clone + DifferentiableMapping<Domain> + Lipschitz<M, FloatType = F> + Bounded<F>, + SupportProductFirst<A, B> : DifferentiableMapping<Domain>, + for<'b> A::Differential<'b> : Lipschitz<M, FloatType = F> + NormBounded<L2, FloatType=F>, + for<'b> B::Differential<'b> : Lipschitz<M, FloatType = F> + NormBounded<L2, FloatType=F> +{ + type FloatType = F; + #[inline] + fn lipschitz_factor(&self, m : M) -> Option<F> { + // ∇[gf] = f∇g + g∇f + // ⟹ ∇[gf](x) - ∇[gf](y) = f(x)∇g(x) + g(x)∇f(x) - f(y)∇g(y) + g(y)∇f(y) + // = f(x)[∇g(x)-∇g(y)] + g(x)∇f(x) - [f(y)-f(x)]∇g(y) + g(y)∇f(y) + // = f(x)[∇g(x)-∇g(y)] + g(x)[∇f(x)-∇f(y)] + // - [f(y)-f(x)]∇g(y) + [g(y)-g(x)]∇f(y) + let &SupportProductFirst(ref f, ref g) = self.base_fn(); + let (df, dg) = (f.diff_ref(), g.diff_ref()); + [ + df.lipschitz_factor(m).map(|l| l * g.bounds().uniform()), + dg.lipschitz_factor(m).map(|l| l * f.bounds().uniform()), + f.lipschitz_factor(m).map(|l| l * dg.norm_bound(L2)), + g.lipschitz_factor(m).map(|l| l * df.norm_bound(L2)) + ].into_iter().sum() + } +} + + impl<'a, A, B, F : Float, const N : usize> Support<F, N> for SupportProductFirst<A, B> -where A : Support<F, N>, - B : Support<F, N> { +where + A : Support<F, N>, + B : Support<F, N> +{ #[inline] fn support_hint(&self) -> Cube<F, N> { self.0.support_hint() @@ -97,7 +166,7 @@ /// Representation of the sum of two kernels /// -/// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`] and [`Mapping`]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] @@ -108,33 +177,48 @@ pub B ); -impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> +impl<'a, A, B, F : Float, const N : usize> Mapping<Loc<F, N>> for SupportSum<A, B> -where A : Apply<&'a Loc<F, N>, Output=F>, - B : Apply<&'a Loc<F, N>, Output=F> { - type Output = F; +where + A : Mapping<Loc<F, N>, Codomain = F>, + B : Mapping<Loc<F, N>, Codomain = F>, +{ + type Codomain = F; + #[inline] - fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { - self.0.apply(x) + self.1.apply(x) + fn apply<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Codomain { + self.0.apply(x.ref_instance()) + self.1.apply(x) } } -impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> +impl<'a, A, B, F : Float, const N : usize> DifferentiableImpl<Loc<F, N>> for SupportSum<A, B> -where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, - B : for<'a> Apply<&'a Loc<F, N>, Output=F> { - type Output = F; +where + A : DifferentiableMapping< + Loc<F, N>, + DerivativeDomain = Loc<F, N> + >, + B : DifferentiableMapping< + Loc<F, N>, + DerivativeDomain = Loc<F, N>, + > +{ + + type Derivative = Loc<F, N>; + #[inline] - fn apply(&self, x : Loc<F, N>) -> Self::Output { - self.0.apply(&x) + self.1.apply(&x) + fn differential_impl<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Derivative { + self.0.differential(x.ref_instance()) + self.1.differential(x) } } + impl<'a, A, B, F : Float, const N : usize> Support<F, N> for SupportSum<A, B> where A : Support<F, N>, B : Support<F, N>, Cube<F, N> : SetOrd { + #[inline] fn support_hint(&self) -> Cube<F, N> { self.0.support_hint().common(&self.1.support_hint()) @@ -174,9 +258,42 @@ } } +impl<F : Float, M : Copy, A, B> Lipschitz<M> for SupportSum<A, B> +where A : Lipschitz<M, FloatType = F>, + B : Lipschitz<M, FloatType = F> { + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + match (self.0.lipschitz_factor(m), self.1.lipschitz_factor(m)) { + (Some(l0), Some(l1)) => Some(l0 + l1), + _ => None + } + } +} + +impl<'b, F : Float, M : Copy, A, B, Domain> Lipschitz<M> +for Differential<'b, Domain, SupportSum<A, B>> +where + Domain : Space, + A : Clone + DifferentiableMapping<Domain, Codomain=F>, + B : Clone + DifferentiableMapping<Domain, Codomain=F>, + SupportSum<A, B> : DifferentiableMapping<Domain, Codomain=F>, + for<'a> A :: Differential<'a> : Lipschitz<M, FloatType = F>, + for<'a> B :: Differential<'a> : Lipschitz<M, FloatType = F> +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + let base = self.base_fn(); + base.0.diff_ref().lipschitz_factor(m) + .zip(base.1.diff_ref().lipschitz_factor(m)) + .map(|(a, b)| a + b) + } +} + /// Representation of the convolution of two kernels. /// -/// The kernels typically implement [`Support`]s and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`]s and [`Mapping`]. // /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] @@ -187,9 +304,46 @@ pub B ); +impl<F : Float, M, A, B> Lipschitz<M> for Convolution<A, B> +where A : Norm<F, L1> , + B : Lipschitz<M, FloatType = F> { + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + // For [f * g](x) = ∫ f(x-y)g(y) dy we have + // [f * g](x) - [f * g](z) = ∫ [f(x-y)-f(z-y)]g(y) dy. + // Hence |[f * g](x) - [f * g](z)| ≤ ∫ |f(x-y)-f(z-y)|g(y)| dy. + // ≤ L|x-z| ∫ |g(y)| dy, + // where L is the Lipschitz factor of f. + self.1.lipschitz_factor(m).map(|l| l * self.0.norm(L1)) + } +} + +impl<'b, F : Float, M, A, B, Domain> Lipschitz<M> +for Differential<'b, Domain, Convolution<A, B>> +where + Domain : Space, + A : Clone + Norm<F, L1> , + Convolution<A, B> : DifferentiableMapping<Domain, Codomain=F>, + B : Clone + DifferentiableMapping<Domain, Codomain=F>, + for<'a> B :: Differential<'a> : Lipschitz<M, FloatType = F> +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + // For [f * g](x) = ∫ f(x-y)g(y) dy we have + // ∇[f * g](x) - ∇[f * g](z) = ∫ [∇f(x-y)-∇f(z-y)]g(y) dy. + // Hence |∇[f * g](x) - ∇[f * g](z)| ≤ ∫ |∇f(x-y)-∇f(z-y)|g(y)| dy. + // ≤ L|x-z| ∫ |g(y)| dy, + // where L is the Lipschitz factor of ∇f. + let base = self.base_fn(); + base.1.diff_ref().lipschitz_factor(m).map(|l| l * base.0.norm(L1)) + } +} + /// Representation of the autoconvolution of a kernel. /// -/// The kernel typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernel typically implements [`Support`] and [`Mapping`]. /// /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] @@ -198,34 +352,130 @@ pub A ); +impl<F : Float, M, C> Lipschitz<M> for AutoConvolution<C> +where C : Lipschitz<M, FloatType = F> + Norm<F, L1> { + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + self.0.lipschitz_factor(m).map(|l| l * self.0.norm(L1)) + } +} + +impl<'b, F : Float, M, C, Domain> Lipschitz<M> +for Differential<'b, Domain, AutoConvolution<C>> +where + Domain : Space, + C : Clone + Norm<F, L1> + DifferentiableMapping<Domain, Codomain=F>, + AutoConvolution<C> : DifferentiableMapping<Domain, Codomain=F>, + for<'a> C :: Differential<'a> : Lipschitz<M, FloatType = F> +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option<F> { + let base = self.base_fn(); + base.0.diff_ref().lipschitz_factor(m).map(|l| l * base.0.norm(L1)) + } +} + + /// Representation a multi-dimensional product of a one-dimensional kernel. /// /// For $G: ℝ → ℝ$, this is the function $F(x\_1, …, x\_n) := \prod_{i=1}^n G(x\_i)$. -/// The kernel $G$ typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping] +/// The kernel $G$ typically implements [`Support`] and [`Mapping`] /// on [`Loc<F, 1>`]. Then the product implements them on [`Loc<F, N>`]. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] +#[allow(dead_code)] struct UniformProduct<G, const N : usize>( /// The one-dimensional kernel G ); -impl<'a, G, F : Float, const N : usize> Apply<&'a Loc<F, N>> +impl<'a, G, F : Float, const N : usize> Mapping<Loc<F, N>> for UniformProduct<G, N> -where G : Apply<Loc<F, 1>, Output=F> { - type Output = F; +where + G : Mapping<Loc<F, 1>, Codomain = F> +{ + type Codomain = F; + #[inline] - fn apply(&self, x : &'a Loc<F, N>) -> F { - x.iter().map(|&y| self.0.apply(Loc([y]))).product() + fn apply<I : Instance<Loc<F, N>>>(&self, x : I) -> F { + x.cow().iter().map(|&y| self.0.apply(Loc([y]))).product() + } +} + + + +impl<'a, G, F : Float, const N : usize> DifferentiableImpl<Loc<F, N>> +for UniformProduct<G, N> +where + G : DifferentiableMapping< + Loc<F, 1>, + DerivativeDomain = F, + Codomain = F, + > +{ + type Derivative = Loc<F, N>; + + #[inline] + fn differential_impl<I : Instance<Loc<F, N>>>(&self, x0 : I) -> Loc<F, N> { + x0.eval(|x| { + let vs = x.map(|y| self.0.apply(Loc([y]))); + product_differential(x, &vs, |y| self.0.differential(Loc([y]))) + }) } } -impl<G, F : Float, const N : usize> Apply<Loc<F, N>> -for UniformProduct<G, N> -where G : Apply<Loc<F, 1>, Output=F> { - type Output = F; - #[inline] - fn apply(&self, x : Loc<F, N>) -> F { - x.into_iter().map(|y| self.0.apply(Loc([y]))).product() +/// Helper function to calulate the differential of $f(x)=∏_{i=1}^N g(x_i)$. +/// +/// The vector `x` is the location, `vs` consists of the values `g(x_i)`, and +/// `gd` calculates the derivative `g'`. +#[inline] +pub(crate) fn product_differential<F : Float, G : Fn(F) -> F, const N : usize>( + x : &Loc<F, N>, + vs : &Loc<F, N>, + gd : G +) -> Loc<F, N> { + map1_indexed(x, |i, &y| { + gd(y) * vs.iter() + .zip(0..) + .filter_map(|(v, j)| (j != i).then_some(*v)) + .product() + }).into() +} + +/// Helper function to calulate the Lipschitz factor of $∇f$ for $f(x)=∏_{i=1}^N g(x_i)$. +/// +/// The parameter `bound` is a bound on $|g|_∞$, `lip` is a Lipschitz factor for $g$, +/// `dbound` is a bound on $|∇g|_∞$, and `dlip` a Lipschitz factor for $∇g$. +#[inline] +pub(crate) fn product_differential_lipschitz_factor<F : Float, const N : usize>( + bound : F, + lip : F, + dbound : F, + dlip : F +) -> F { + // For arbitrary ψ(x) = ∏_{i=1}^n ψ_i(x_i), we have + // ψ(x) - ψ(y) = ∑_i [ψ_i(x_i)-ψ_i(y_i)] ∏_{j ≠ i} ψ_j(x_j) + // by a simple recursive argument. In particular, if ψ_i=g for all i, j, we have + // |ψ(x) - ψ(y)| ≤ ∑_i L_g M_g^{n-1}|x-y|, where L_g is the Lipschitz factor of g, and + // M_g a bound on it. + // + // We also have in the general case ∇ψ(x) = ∑_i ∇ψ_i(x_i) ∏_{j ≠ i} ψ_j(x_j), whence + // using the previous formula for each i with f_i=∇ψ_i and f_j=ψ_j for j ≠ i, we get + // ∇ψ(x) - ∇ψ(y) = ∑_i[ ∇ψ_i(x_i)∏_{j ≠ i} ψ_j(x_j) - ∇ψ_i(y_i)∏_{j ≠ i} ψ_j(y_j)] + // = ∑_i[ [∇ψ_i(x_i) - ∇ψ_j(x_j)] ∏_{j ≠ i}ψ_j(x_j) + // + [∑_{k ≠ i} [ψ_k(x_k) - ∇ψ_k(x_k)] ∏_{j ≠ i, k}ψ_j(x_j)]∇ψ_i(x_i)]. + // With $ψ_i=g for all i, j, it follows that + // |∇ψ(x) - ∇ψ(y)| ≤ ∑_i L_{∇g} M_g^{n-1} + ∑_{k ≠ i} L_g M_g^{n-2} M_{∇g} + // = n [L_{∇g} M_g^{n-1} + (n-1) L_g M_g^{n-2} M_{∇g}]. + // = n M_g^{n-2}[L_{∇g} M_g + (n-1) L_g M_{∇g}]. + if N >= 2 { + F::cast_from(N) * bound.powi((N-2) as i32) + * (dlip * bound + F::cast_from(N-1) * lip * dbound) + } else if N==1 { + dlip + } else { + panic!("Invalid dimension") } }