src/forward_model/sensor_grid.rs

changeset 52
f0e8704d3f0e
parent 49
6b0db7251ebe
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/forward_model/sensor_grid.rs	Mon Feb 17 13:54:53 2025 -0500
@@ -0,0 +1,645 @@
+/*!
+Sensor grid forward model
+*/
+
+use nalgebra::base::{DMatrix, DVector};
+use numeric_literals::replace_float_literals;
+use std::iter::Zip;
+use std::ops::RangeFrom;
+
+use alg_tools::bisection_tree::*;
+use alg_tools::error::DynError;
+use alg_tools::instance::Instance;
+use alg_tools::iter::{MapX, Mappable};
+use alg_tools::lingrid::*;
+pub use alg_tools::linops::*;
+use alg_tools::mapping::{DifferentiableMapping, RealMapping};
+use alg_tools::maputil::map2;
+use alg_tools::nalgebra_support::ToNalgebraRealField;
+use alg_tools::norms::{Linfinity, Norm, L1, L2};
+use alg_tools::tabledump::write_csv;
+
+use super::{AdjointProductBoundedBy, BoundedCurvature, ForwardModel};
+use crate::frank_wolfe::FindimQuadraticModel;
+use crate::kernels::{AutoConvolution, BoundedBy, Convolution};
+use crate::measures::{DiscreteMeasure, Radon};
+use crate::preadjoint_helper::PreadjointHelper;
+use crate::seminorms::{ConvolutionOp, SimpleConvolutionKernel};
+use crate::types::*;
+
+type RNDM<F, const N: usize> = DiscreteMeasure<Loc<F, N>, F>;
+
+pub type ShiftedSensor<F, S, P, const N: usize> = Shift<Convolution<S, P>, F, N>;
+
+/// Trait for physical convolution models. Has blanket implementation for all cases.
+pub trait Spread<F: Float, const N: usize>:
+    'static + Clone + Support<F, N> + RealMapping<F, N> + Bounded<F>
+{
+}
+
+impl<F, T, const N: usize> Spread<F, N> for T
+where
+    F: Float,
+    T: 'static + Clone + Support<F, N> + Bounded<F> + RealMapping<F, N>,
+{
+}
+
+/// Trait for compactly supported sensors. Has blanket implementation for all cases.
+pub trait Sensor<F: Float, const N: usize>:
+    Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity>
+{
+}
+
+impl<F, T, const N: usize> Sensor<F, N> for T
+where
+    F: Float,
+    T: Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity>,
+{
+}
+
+pub trait SensorGridBT<F, S, P, const N: usize>:
+    Clone + BTImpl<F, N, Data = usize, Agg = Bounds<F>>
+where
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+{
+}
+
+impl<F, S, P, T, const N: usize> SensorGridBT<F, S, P, N> for T
+where
+    T: Clone + BTImpl<F, N, Data = usize, Agg = Bounds<F>>,
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+{
+}
+
+// We need type alias bounds to access associated types
+#[allow(type_alias_bounds)]
+pub type SensorGridBTFN<F, S, P, BT: SensorGridBT<F, S, P, N>, const N: usize> =
+    BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>;
+
+/// Sensor grid forward model
+#[derive(Clone)]
+pub struct SensorGrid<F, S, P, BT, const N: usize>
+where
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+    BT: SensorGridBT<F, S, P, N>,
+{
+    domain: Cube<F, N>,
+    sensor_count: [usize; N],
+    sensor: S,
+    spread: P,
+    base_sensor: Convolution<S, P>,
+    bt: BT,
+}
+
+impl<F, S, P, BT, const N: usize> SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, BT::Agg, N>,
+{
+    /// Create a new sensor grid.
+    ///
+    /// The parameter `depth` indicates the search depth of the created [`BT`]s
+    /// for the adjoint values.
+    pub fn new(
+        domain: Cube<F, N>,
+        sensor_count: [usize; N],
+        sensor: S,
+        spread: P,
+        depth: BT::Depth,
+    ) -> Self {
+        let base_sensor = Convolution(sensor.clone(), spread.clone());
+        let bt = BT::new(domain, depth);
+        let mut sensorgrid = SensorGrid {
+            domain,
+            sensor_count,
+            sensor,
+            spread,
+            base_sensor,
+            bt,
+        };
+
+        for (x, id) in sensorgrid.grid().into_iter().zip(0usize..) {
+            let s = sensorgrid.shifted_sensor(x);
+            sensorgrid.bt.insert(id, &s);
+        }
+
+        sensorgrid
+    }
+}
+
+impl<F, S, P, BT, const N: usize> SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+    /// Return the grid of sensor locations.
+    pub fn grid(&self) -> LinGrid<F, N> {
+        lingrid_centered(&self.domain, &self.sensor_count)
+    }
+
+    /// Returns the number of sensors (number of grid points)
+    pub fn n_sensors(&self) -> usize {
+        self.sensor_count.iter().product()
+    }
+
+    /// Constructs a sensor shifted by `x`.
+    #[inline]
+    fn shifted_sensor(&self, x: Loc<F, N>) -> ShiftedSensor<F, S, P, N> {
+        self.base_sensor.clone().shift(x)
+    }
+
+    #[inline]
+    fn _zero_observable(&self) -> DVector<F> {
+        DVector::zeros(self.n_sensors())
+    }
+
+    /// Returns the maximum number of overlapping sensors $N_\psi$.
+    pub fn max_overlapping(&self) -> F {
+        let w = self.base_sensor.support_hint().width();
+        let d = map2(self.domain.width(), &self.sensor_count, |wi, &i| {
+            wi / F::cast_from(i)
+        });
+        w.iter()
+            .zip(d.iter())
+            .map(|(&wi, &di)| (wi / di).ceil())
+            .reduce(F::mul)
+            .unwrap()
+    }
+}
+
+impl<F, S, P, BT, const N: usize> Mapping<RNDM<F, N>> for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+    type Codomain = DVector<F>;
+
+    #[inline]
+    fn apply<I: Instance<RNDM<F, N>>>(&self, μ: I) -> DVector<F> {
+        let mut y = self._zero_observable();
+        self.apply_add(&mut y, μ);
+        y
+    }
+}
+
+impl<F, S, P, BT, const N: usize> Linear<RNDM<F, N>> for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+}
+
+#[replace_float_literals(F::cast_from(literal))]
+impl<F, S, P, BT, const N: usize> GEMV<F, RNDM<F, N>, DVector<F>> for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+    fn gemv<I: Instance<RNDM<F, N>>>(&self, y: &mut DVector<F>, α: F, μ: I, β: F) {
+        let grid = self.grid();
+        if β == 0.0 {
+            y.fill(0.0)
+        } else if β != 1.0 {
+            *y *= β; // Need to multiply first, as we have to be able to add to y.
+        }
+        if α == 1.0 {
+            self.apply_add(y, μ)
+        } else {
+            for δ in μ.ref_instance() {
+                for &d in self.bt.iter_at(&δ.x) {
+                    let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d));
+                    y[d] += sensor.apply(&δ.x) * (α * δ.α);
+                }
+            }
+        }
+    }
+
+    fn apply_add<I: Instance<RNDM<F, N>>>(&self, y: &mut DVector<F>, μ: I) {
+        let grid = self.grid();
+        for δ in μ.ref_instance() {
+            for &d in self.bt.iter_at(&δ.x) {
+                let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d));
+                y[d] += sensor.apply(&δ.x) * δ.α;
+            }
+        }
+    }
+}
+
+impl<F, S, P, BT, const N: usize> BoundedLinear<RNDM<F, N>, Radon, L2, F>
+    for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N, Agg = Bounds<F>>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, BT::Agg, N>,
+{
+    /// An estimate on the operator norm in $𝕃(ℳ(Ω); ℝ^n)$ with $ℳ(Ω)$ equipped
+    /// with the Radon norm, and $ℝ^n$ with the Euclidean norm.
+    fn opnorm_bound(&self, _: Radon, _: L2) -> F {
+        // With {x_i}_{i=1}^n the grid centres and φ the kernel, we have
+        // |Aμ|_2 = sup_{|z|_2 ≤ 1} ⟨z,Αμ⟩ = sup_{|z|_2 ≤ 1} ⟨A^*z|μ⟩
+        // ≤ sup_{|z|_2 ≤ 1} |A^*z|_∞ |μ|_ℳ
+        // = sup_{|z|_2 ≤ 1} |∑ φ(· - x_i)z_i|_∞ |μ|_ℳ
+        // ≤ sup_{|z|_2 ≤ 1} |φ(y)| ∑_{i:th sensor active at y}|z_i| |μ|_ℳ
+        //      where the supremum of |∑ φ(· - x_i)z_i|_∞  is reached at y
+        // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ √N_ψ |z|_2 |μ|_ℳ
+        //      where N_ψ is the maximum number of sensors that overlap, and
+        //      |z|_2 is restricted to the active sensors.
+        // = |φ|_∞ √N_ψ |μ|_ℳ.
+        // Hence
+        let n = self.max_overlapping();
+        self.base_sensor.bounds().uniform() * n.sqrt()
+    }
+}
+
+type SensorGridPreadjoint<'a, A, F, const N: usize> = PreadjointHelper<'a, A, RNDM<F, N>>;
+
+impl<F, S, P, BT, const N: usize> Preadjointable<RNDM<F, N>, DVector<F>>
+    for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, BT::Agg, N>,
+{
+    type PreadjointCodomain = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>;
+    type Preadjoint<'a>
+        = SensorGridPreadjoint<'a, Self, F, N>
+    where
+        Self: 'a;
+
+    fn preadjoint(&self) -> Self::Preadjoint<'_> {
+        PreadjointHelper::new(self)
+    }
+}
+
+/*
+#[replace_float_literals(F::cast_from(literal))]
+impl<'a, F, S, P, BT, const N : usize> LipschitzValues
+for SensorGridPreadjoint<'a, SensorGrid<F, S, P, BT, N>, F, N>
+where F : Float,
+      BT : SensorGridBT<F, S, P, N>,
+      S : Sensor<F, N>,
+      P : Spread<F, N>,
+      Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType=F> + DifferentiableMapping<Loc<F,N>> + LocalAnalysis<F, BT::Agg, N>,
+      for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F,N>>>::Differential<'b> : Lipschitz<L2, FloatType=F>,
+{
+
+    type FloatType = F;
+
+    fn value_unit_lipschitz_factor(&self) -> Option<F> {
+        // The Lipschitz factor of the sensors has to be scaled by the square root of twice
+        // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve
+        // two points.
+        let fw = self.forward_op;
+        let n = fw.max_overlapping();
+        fw.base_sensor.lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l)
+    }
+
+    fn value_diff_unit_lipschitz_factor(&self) -> Option<F> {
+        // The Lipschitz factor of the sensors has to be scaled by the square root of twice
+        // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve
+        // two points.
+        let fw = self.forward_op;
+        let n = fw.max_overlapping();
+        fw.base_sensor.diff_ref().lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l)
+    }
+}
+*/
+
+#[replace_float_literals(F::cast_from(literal))]
+impl<'a, F, S, P, BT, const N: usize> BoundedCurvature for SensorGrid<F, S, P, BT, N>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>
+        + Lipschitz<L2, FloatType = F>
+        + DifferentiableMapping<Loc<F, N>>
+        + LocalAnalysis<F, BT::Agg, N>,
+    for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F, N>>>::Differential<'b>:
+        Lipschitz<L2, FloatType = F>,
+{
+    type FloatType = F;
+
+    /// Returns factors $ℓ_F$ and $Θ²$ such that
+    /// $B_{F'(μ)} dγ ≤ ℓ_F c_2$ and $⟨F'(μ)+F'(μ+Δ)|Δ⟩ ≤ Θ²|γ|(c_2)‖γ‖$,
+    /// where $Δ=(π_♯^1-π_♯^0)γ$.
+    ///
+    /// See Lemma 3.8, Lemma 5.10, Remark 5.14, and Example 5.15.
+    fn curvature_bound_components(&self) -> (Option<Self::FloatType>, Option<Self::FloatType>) {
+        let n_ψ = self.max_overlapping();
+        let ψ_diff_lip = self.base_sensor.diff_ref().lipschitz_factor(L2);
+        let ψ_lip = self.base_sensor.lipschitz_factor(L2);
+        let ℓ_F = ψ_diff_lip.map(|l| (2.0 * n_ψ).sqrt() * l);
+        let θ2 = ψ_lip.map(|l| 4.0 * n_ψ * l.powi(2));
+
+        (ℓ_F, θ2)
+    }
+}
+
+#[derive(Clone, Debug)]
+pub struct SensorGridSupportGenerator<F, S, P, const N: usize>
+where
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+{
+    base_sensor: Convolution<S, P>,
+    grid: LinGrid<F, N>,
+    weights: DVector<F>,
+}
+
+impl<F, S, P, const N: usize> SensorGridSupportGenerator<F, S, P, N>
+where
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+    #[inline]
+    fn construct_sensor(&self, id: usize, w: F) -> Weighted<ShiftedSensor<F, S, P, N>, F> {
+        let x = self.grid.entry_linear_unchecked(id);
+        self.base_sensor.clone().shift(x).weigh(w)
+    }
+
+    #[inline]
+    fn construct_sensor_and_id<'a>(
+        &'a self,
+        (id, w): (usize, &'a F),
+    ) -> (usize, Weighted<ShiftedSensor<F, S, P, N>, F>) {
+        (id.into(), self.construct_sensor(id, *w))
+    }
+}
+
+impl<F, S, P, const N: usize> SupportGenerator<F, N> for SensorGridSupportGenerator<F, S, P, N>
+where
+    F: Float,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+{
+    type Id = usize;
+    type SupportType = Weighted<ShiftedSensor<F, S, P, N>, F>;
+    type AllDataIter<'a>
+        = MapX<
+        'a,
+        Zip<RangeFrom<usize>, std::slice::Iter<'a, F>>,
+        Self,
+        (Self::Id, Self::SupportType),
+    >
+    where
+        Self: 'a;
+
+    #[inline]
+    fn support_for(&self, d: Self::Id) -> Self::SupportType {
+        self.construct_sensor(d, self.weights[d])
+    }
+
+    #[inline]
+    fn support_count(&self) -> usize {
+        self.weights.len()
+    }
+
+    #[inline]
+    fn all_data(&self) -> Self::AllDataIter<'_> {
+        (0..)
+            .zip(self.weights.as_slice().iter())
+            .mapX(self, Self::construct_sensor_and_id)
+    }
+}
+
+impl<F, S, P, BT, const N: usize> ForwardModel<DiscreteMeasure<Loc<F, N>, F>, F>
+    for SensorGrid<F, S, P, BT, N>
+where
+    F: Float + ToNalgebraRealField<MixedType = F> + nalgebra::RealField,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, BT::Agg, N>,
+{
+    type Observable = DVector<F>;
+
+    fn write_observable(&self, b: &Self::Observable, prefix: String) -> DynError {
+        let it = self.grid().into_iter().zip(b.iter()).map(|(x, &v)| (x, v));
+        write_csv(it, prefix + ".txt")
+    }
+
+    #[inline]
+    fn zero_observable(&self) -> Self::Observable {
+        self._zero_observable()
+    }
+}
+
+impl<F, S, P, BT, const N: usize> FindimQuadraticModel<Loc<F, N>, F> for SensorGrid<F, S, P, BT, N>
+where
+    F: Float + ToNalgebraRealField<MixedType = F> + nalgebra::RealField,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, BT::Agg, N>,
+{
+    fn findim_quadratic_model(
+        &self,
+        μ: &DiscreteMeasure<Loc<F, N>, F>,
+        b: &Self::Observable,
+    ) -> (DMatrix<F::MixedType>, DVector<F::MixedType>) {
+        assert_eq!(b.len(), self.n_sensors());
+        let mut mA = DMatrix::zeros(self.n_sensors(), μ.len());
+        let grid = self.grid();
+        for (mut mAcol, δ) in mA.column_iter_mut().zip(μ.iter_spikes()) {
+            for &d in self.bt.iter_at(&δ.x) {
+                let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d));
+                mAcol[d] += sensor.apply(&δ.x);
+            }
+        }
+        let mAt = mA.transpose();
+        (&mAt * mA, &mAt * b)
+    }
+}
+
+/// Implements the calculation a factor $L$ such that $A_*A ≤ L 𝒟$ for $A$ the forward model
+/// and $𝒟$ a seminorm of suitable form.
+///
+/// **This assumes (but does not check) that the sensors are not overlapping.**
+#[replace_float_literals(F::cast_from(literal))]
+impl<F, BT, S, P, K, const N: usize> AdjointProductBoundedBy<RNDM<F, N>, ConvolutionOp<F, K, BT, N>>
+    for SensorGrid<F, S, P, BT, N>
+where
+    F: Float + nalgebra::RealField + ToNalgebraRealField,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N>,
+    K: SimpleConvolutionKernel<F, N>,
+    AutoConvolution<P>: BoundedBy<F, K>,
+{
+    type FloatType = F;
+
+    fn adjoint_product_bound(&self, seminorm: &ConvolutionOp<F, K, BT, N>) -> Option<F> {
+        // Sensors should not take on negative values to allow
+        // A_*A to be upper bounded by a simple convolution of `spread`.
+        if self.sensor.bounds().lower() < 0.0 {
+            return None;
+        }
+
+        // Calculate the factor $L_1$ for betwee $ℱ[ψ * ψ] ≤ L_1 ℱ[ρ]$ for $ψ$ the base spread
+        // and $ρ$ the kernel of the seminorm.
+        let l1 = AutoConvolution(self.spread.clone()).bounding_factor(seminorm.kernel())?;
+
+        // Calculate the factor for transitioning from $A_*A$ to `AutoConvolution<P>`, where A
+        // consists of several `Convolution<S, P>` for the physical model `P` and the sensor `S`.
+        let l0 = self.sensor.norm(Linfinity) * self.sensor.norm(L1);
+
+        // The final transition factor is:
+        Some(l0 * l1)
+    }
+}
+
+macro_rules! make_sensorgridsupportgenerator_scalarop_rhs {
+    ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => {
+        impl<F, S, P, const N: usize> std::ops::$trait_assign<F>
+            for SensorGridSupportGenerator<F, S, P, N>
+        where
+            F: Float,
+            S: Sensor<F, N>,
+            P: Spread<F, N>,
+            Convolution<S, P>: Spread<F, N>,
+        {
+            fn $fn_assign(&mut self, t: F) {
+                self.weights.$fn_assign(t);
+            }
+        }
+
+        impl<F, S, P, const N: usize> std::ops::$trait<F> for SensorGridSupportGenerator<F, S, P, N>
+        where
+            F: Float,
+            S: Sensor<F, N>,
+            P: Spread<F, N>,
+            Convolution<S, P>: Spread<F, N>,
+        {
+            type Output = SensorGridSupportGenerator<F, S, P, N>;
+            fn $fn(mut self, t: F) -> Self::Output {
+                std::ops::$trait_assign::$fn_assign(&mut self.weights, t);
+                self
+            }
+        }
+
+        impl<'a, F, S, P, const N: usize> std::ops::$trait<F>
+            for &'a SensorGridSupportGenerator<F, S, P, N>
+        where
+            F: Float,
+            S: Sensor<F, N>,
+            P: Spread<F, N>,
+            Convolution<S, P>: Spread<F, N>,
+        {
+            type Output = SensorGridSupportGenerator<F, S, P, N>;
+            fn $fn(self, t: F) -> Self::Output {
+                SensorGridSupportGenerator {
+                    base_sensor: self.base_sensor.clone(),
+                    grid: self.grid,
+                    weights: (&self.weights).$fn(t),
+                }
+            }
+        }
+    };
+}
+
+make_sensorgridsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign);
+make_sensorgridsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign);
+
+macro_rules! make_sensorgridsupportgenerator_unaryop {
+    ($trait:ident, $fn:ident) => {
+        impl<F, S, P, const N: usize> std::ops::$trait for SensorGridSupportGenerator<F, S, P, N>
+        where
+            F: Float,
+            S: Sensor<F, N>,
+            P: Spread<F, N>,
+            Convolution<S, P>: Spread<F, N>,
+        {
+            type Output = SensorGridSupportGenerator<F, S, P, N>;
+            fn $fn(mut self) -> Self::Output {
+                self.weights = self.weights.$fn();
+                self
+            }
+        }
+
+        impl<'a, F, S, P, const N: usize> std::ops::$trait
+            for &'a SensorGridSupportGenerator<F, S, P, N>
+        where
+            F: Float,
+            S: Sensor<F, N>,
+            P: Spread<F, N>,
+            Convolution<S, P>: Spread<F, N>,
+        {
+            type Output = SensorGridSupportGenerator<F, S, P, N>;
+            fn $fn(self) -> Self::Output {
+                SensorGridSupportGenerator {
+                    base_sensor: self.base_sensor.clone(),
+                    grid: self.grid,
+                    weights: (&self.weights).$fn(),
+                }
+            }
+        }
+    };
+}
+
+make_sensorgridsupportgenerator_unaryop!(Neg, neg);
+
+impl<'a, F, S, P, BT, const N: usize> Mapping<DVector<F>>
+    for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F, N>>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+{
+    type Codomain = SensorGridBTFN<F, S, P, BT, N>;
+
+    fn apply<I: Instance<DVector<F>>>(&self, x: I) -> Self::Codomain {
+        let fwd = &self.forward_op;
+        let generator = SensorGridSupportGenerator {
+            base_sensor: fwd.base_sensor.clone(),
+            grid: fwd.grid(),
+            weights: x.own(),
+        };
+        BTFN::new_refresh(&fwd.bt, generator)
+    }
+}
+
+impl<'a, F, S, P, BT, const N: usize> Linear<DVector<F>>
+    for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F, N>>
+where
+    F: Float,
+    BT: SensorGridBT<F, S, P, N>,
+    S: Sensor<F, N>,
+    P: Spread<F, N>,
+    Convolution<S, P>: Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+{
+}

mercurial