src/radon_fb.rs

branch
dev
changeset 37
c5d8bd1a7728
parent 36
fb911f72e698
child 38
0f59c0d02e13
child 39
6316d68b58af
--- a/src/radon_fb.rs	Mon Jan 06 11:32:57 2025 -0500
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,404 +0,0 @@
-/*!
-Solver for the point source localisation problem using a simplified forward-backward splitting method.
-
-Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map.
-*/
-
-use numeric_literals::replace_float_literals;
-use serde::{Serialize, Deserialize};
-use colored::Colorize;
-use nalgebra::DVector;
-
-use alg_tools::iterate::{
-    AlgIteratorFactory,
-    AlgIteratorIteration,
-    AlgIterator
-};
-use alg_tools::euclidean::Euclidean;
-use alg_tools::linops::Mapping;
-use alg_tools::sets::Cube;
-use alg_tools::loc::Loc;
-use alg_tools::bisection_tree::{
-    BTFN,
-    Bounds,
-    BTNodeLookup,
-    BTNode,
-    BTSearch,
-    P2Minimise,
-    SupportGenerator,
-    LocalAnalysis,
-};
-use alg_tools::mapping::RealMapping;
-use alg_tools::nalgebra_support::ToNalgebraRealField;
-use alg_tools::norms::L2;
-
-use crate::types::*;
-use crate::measures::{
-    RNDM,
-    DiscreteMeasure,
-    DeltaMeasure,
-    Radon,
-};
-use crate::measures::merging::{
-    SpikeMergingMethod,
-    SpikeMerging,
-};
-use crate::forward_model::ForwardModel;
-use crate::plot::{
-    SeqPlotter,
-    Plotting,
-    PlotLookup
-};
-use crate::regularisation::RegTerm;
-use crate::dataterm::{
-    calculate_residual,
-    L2Squared,
-    DataTerm,
-};
-
-use crate::fb::{
-    FBGenericConfig,
-    postprocess,
-    prune_with_stats
-};
-
-/// Settings for [`pointsource_radon_fb_reg`].
-#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
-#[serde(default)]
-pub struct RadonFBConfig<F : Float> {
-    /// Step length scaling
-    pub τ0 : F,
-    /// Generic parameters
-    pub insertion : FBGenericConfig<F>,
-}
-
-#[replace_float_literals(F::cast_from(literal))]
-impl<F : Float> Default for RadonFBConfig<F> {
-    fn default() -> Self {
-        RadonFBConfig {
-            τ0 : 0.99,
-            insertion : Default::default()
-        }
-    }
-}
-
-#[replace_float_literals(F::cast_from(literal))]
-pub(crate) fn insert_and_reweigh<
-    'a, F, GA, BTA, S, Reg, I, const N : usize
->(
-    μ : &mut RNDM<F, N>,
-    τv : &mut BTFN<F, GA, BTA, N>,
-    μ_base : &mut RNDM<F, N>,
-    //_ν_delta: Option<&RNDM<F, N>>,
-    τ : F,
-    ε : F,
-    config : &FBGenericConfig<F>,
-    reg : &Reg,
-    _state : &AlgIteratorIteration<I>,
-    stats : &mut IterInfo<F, N>,
-)
-where F : Float + ToNalgebraRealField,
-      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
-      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
-      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
-      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
-      RNDM<F, N> : SpikeMerging<F>,
-      Reg : RegTerm<F, N>,
-      I : AlgIterator {
-
-    'i_and_w: for i in 0..=1 {
-        // Optimise weights
-        if μ.len() > 0 {
-            // Form finite-dimensional subproblem. The subproblem references to the original μ^k
-            // from the beginning of the iteration are all contained in the immutable c and g.
-            // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional
-            // problems have not yet been updated to sign change.
-            let g̃ = DVector::from_iterator(μ.len(),
-                                           μ.iter_locations()
-                                            .map(|ζ| - F::to_nalgebra_mixed(τv.apply(ζ))));
-            let mut x = μ.masses_dvector();
-            let y = μ_base.masses_dvector();
-
-            // Solve finite-dimensional subproblem.
-            stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config);
-
-            // Update masses of μ based on solution of finite-dimensional subproblem.
-            μ.set_masses_dvector(&x);
-        }
-
-        if i>0 {
-            // Simple debugging test to see if more inserts would be needed. Doesn't seem so.
-            //let n = μ.dist_matching(μ_base);
-            //println!("{:?}", reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n));
-            break 'i_and_w
-        }
-        
-        // Calculate ‖μ - μ_base‖_ℳ
-        let n = μ.dist_matching(μ_base);
-       
-        // Find a spike to insert, if needed.
-        // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ,
-        // which are supposed to have been guaranteed by the finite-dimensional weight optimisation.
-        match reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n) {
-            None => { break 'i_and_w },
-            Some((ξ, _v_ξ, _in_bounds)) => {
-                // Weight is found out by running the finite-dimensional optimisation algorithm
-                // above
-                *μ += DeltaMeasure { x : ξ, α : 0.0 };
-                *μ_base += DeltaMeasure { x : ξ, α : 0.0 };
-                stats.inserted += 1;
-            }
-        };
-    }
-}
-
-
-/// Iteratively solve the pointsource localisation problem using simplified forward-backward splitting.
-///
-/// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the
-/// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight.
-/// Finally, the `iterator` is an outer loop verbosity and iteration count control
-/// as documented in [`alg_tools::iterate`].
-///
-/// For details on the mathematical formulation, see the [module level](self) documentation.
-///
-/// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of
-/// sums of simple functions usign bisection trees, and the related
-/// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions
-/// active at a specific points, and to maximise their sums. Through the implementation of the
-/// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features
-/// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions.
-///
-/// Returns the final iterate.
-#[replace_float_literals(F::cast_from(literal))]
-pub fn pointsource_radon_fb_reg<
-    'a, F, I, A, GA, BTA, S, Reg, const N : usize
->(
-    opA : &'a A,
-    b : &A::Observable,
-    reg : Reg,
-    fbconfig : &RadonFBConfig<F>,
-    iterator : I,
-    mut _plotter : SeqPlotter<F, N>,
-) -> RNDM<F, N>
-where F : Float + ToNalgebraRealField,
-      I : AlgIteratorFactory<IterInfo<F, N>>,
-      for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>,
-      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
-      A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>,
-      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
-      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
-      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
-      Cube<F, N>: P2Minimise<Loc<F, N>, F>,
-      RNDM<F, N> : SpikeMerging<F>,
-      Reg : RegTerm<F, N> {
-
-    // Set up parameters
-    let config = &fbconfig.insertion;
-    // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ
-    // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such
-    // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L.
-    let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2);
-    // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
-    // by τ compared to the conditional gradient approach.
-    let tolerance = config.tolerance * τ * reg.tolerance_scaling();
-    let mut ε = tolerance.initial();
-
-    // Initialise iterates
-    let mut μ = DiscreteMeasure::new();
-    let mut residual = -b;
-    
-    // Statistics
-    let full_stats = |residual : &A::Observable,
-                      μ : &RNDM<F, N>,
-                      ε, stats| IterInfo {
-        value : residual.norm2_squared_div2() + reg.apply(μ),
-        n_spikes : μ.len(),
-        ε,
-        // postprocessing: config.postprocessing.then(|| μ.clone()),
-        .. stats
-    };
-    let mut stats = IterInfo::new();
-
-    // Run the algorithm
-    for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) {
-        // Calculate smooth part of surrogate model.
-        let mut τv = opA.preadjoint().apply(residual * τ);
-
-        // Save current base point
-        let mut μ_base = μ.clone();
-            
-        // Insert and reweigh
-        insert_and_reweigh(
-            &mut μ, &mut τv, &mut μ_base, //None,
-            τ, ε,
-            config, &reg, &state, &mut stats
-        );
-
-        // Prune and possibly merge spikes
-        assert!(μ_base.len() <= μ.len());
-        if config.merge_now(&state) {
-            stats.merged += μ.merge_spikes(config.merging, |μ_candidate| {
-                // Important: μ_candidate's new points are afterwards,
-                // and do not conflict with μ_base.
-                // TODO: could simplify to requiring μ_base instead of μ_radon.
-                // but may complicate with sliding base's exgtra points that need to be
-                // after μ_candidate's extra points.
-                // TODO: doesn't seem to work, maybe need to merge μ_base as well?
-                // Although that doesn't seem to make sense.
-                let μ_radon = μ_candidate.sub_matching(&μ_base);
-                reg.verify_merge_candidate_radonsq(&mut τv, μ_candidate, τ, ε, &config, &μ_radon)
-                //let n = μ_candidate.dist_matching(μ_base);
-                //reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n).is_none()
-            });
-        }
-        stats.pruned += prune_with_stats(&mut μ);
-
-        // Update residual
-        residual = calculate_residual(&μ, opA, b);
-
-        let iter = state.iteration();
-        stats.this_iters += 1;
-
-        // Give statistics if needed
-        state.if_verbose(|| {
-            full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new()))
-        });
-
-        // Update main tolerance for next iteration
-        ε = tolerance.update(ε, iter);
-    }
-
-    postprocess(μ, config, L2Squared, opA, b)
-}
-
-/// Iteratively solve the pointsource localisation problem using simplified inertial forward-backward splitting.
-///
-/// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the
-/// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight.
-/// Finally, the `iterator` is an outer loop verbosity and iteration count control
-/// as documented in [`alg_tools::iterate`].
-///
-/// For details on the mathematical formulation, see the [module level](self) documentation.
-///
-/// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of
-/// sums of simple functions usign bisection trees, and the related
-/// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions
-/// active at a specific points, and to maximise their sums. Through the implementation of the
-/// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features
-/// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions.
-///
-/// Returns the final iterate.
-#[replace_float_literals(F::cast_from(literal))]
-pub fn pointsource_radon_fista_reg<
-    'a, F, I, A, GA, BTA, S, Reg, const N : usize
->(
-    opA : &'a A,
-    b : &A::Observable,
-    reg : Reg,
-    fbconfig : &RadonFBConfig<F>,
-    iterator : I,
-    mut plotter : SeqPlotter<F, N>,
-) -> RNDM<F, N>
-where F : Float + ToNalgebraRealField,
-      I : AlgIteratorFactory<IterInfo<F, N>>,
-      for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>,
-      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
-      A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>,
-      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
-      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
-      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
-      Cube<F, N>: P2Minimise<Loc<F, N>, F>,
-      PlotLookup : Plotting<N>,
-      RNDM<F, N> : SpikeMerging<F>,
-      Reg : RegTerm<F, N> {
-
-    // Set up parameters
-    let config = &fbconfig.insertion;
-    // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ
-    // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such
-    // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L.
-    let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2);
-    let mut λ = 1.0;
-    // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
-    // by τ compared to the conditional gradient approach.
-    let tolerance = config.tolerance * τ * reg.tolerance_scaling();
-    let mut ε = tolerance.initial();
-
-    // Initialise iterates
-    let mut μ = DiscreteMeasure::new();
-    let mut μ_prev = DiscreteMeasure::new();
-    let mut residual = -b;
-    let mut warned_merging = false;
-
-    // Statistics
-    let full_stats = |ν : &RNDM<F, N>, ε, stats| IterInfo {
-        value : L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν),
-        n_spikes : ν.len(),
-        ε,
-        // postprocessing: config.postprocessing.then(|| ν.clone()),
-        .. stats
-    };
-    let mut stats = IterInfo::new();
-
-    // Run the algorithm
-    for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) {
-        // Calculate smooth part of surrogate model.
-        let mut τv = opA.preadjoint().apply(residual * τ);
-
-        // Save current base point
-        let mut μ_base = μ.clone();
-            
-        // Insert new spikes and reweigh
-        insert_and_reweigh(
-            &mut μ, &mut τv, &mut μ_base, //None,
-            τ, ε,
-            config, &reg, &state, &mut stats
-        );
-
-        // (Do not) merge spikes.
-        if config.merge_now(&state) {
-            match config.merging {
-                SpikeMergingMethod::None => { },
-                _ => if !warned_merging {
-                    let err = format!("Merging not supported for μFISTA");
-                    println!("{}", err.red());
-                    warned_merging = true;
-                }
-            }
-        }
-
-        // Update inertial prameters
-        let λ_prev = λ;
-        λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() );
-        let θ = λ / λ_prev - λ;
-
-        // Perform inertial update on μ.
-        // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ
-        // and μ_prev have zero weight. Since both have weights from the finite-dimensional
-        // subproblem with a proximal projection step, this is likely to happen when the
-        // spike is not needed. A copy of the pruned μ without artithmetic performed is
-        // stored in μ_prev.
-        let n_before_prune = μ.len();
-        μ.pruning_sub(1.0 + θ, θ, &mut μ_prev);
-        debug_assert!(μ.len() <= n_before_prune);
-        stats.pruned += n_before_prune - μ.len();
-
-        // Update residual
-        residual = calculate_residual(&μ, opA, b);
-       
-        let iter = state.iteration();
-        stats.this_iters += 1;
-
-        // Give statistics if needed
-        state.if_verbose(|| {
-            plotter.plot_spikes(iter, Option::<&S>::None, Some(&τv), &μ_prev);
-            full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new()))
-        });
-
-        // Update main tolerance for next iteration
-        ε = tolerance.update(ε, iter);
-    }
-
-    postprocess(μ_prev, config, L2Squared, opA, b)
-}

mercurial