--- a/README.md Thu Jan 23 23:34:05 2025 +0100 +++ b/README.md Thu Jan 23 23:48:52 2025 +0100 @@ -1,19 +1,19 @@ # Proximal methods for point source localisation: the implementation -This package contains [Rust] codes for the manuscript “_Proximal methods for -point source localisation_” ([arXiv:2212.02991]) by Tuomo Valkonen -⟨tuomov@iki.fi⟩. It concerns solution of problems of the type +This package contains the [Rust] codes for the numerical experiments in the articles +* T. Valkonen, “_Proximal methods for +point source localisation_”, Journal of Nonsmooth Analysis and Optimization 4 (2023), 10433, [doi:10.46298/jnsao-2023-10433] ([arXiv:2212.02991]) +* T. Valkonen, “_Point source localisation with unbalanced optimal transport_” (2025), submitted. + +It concerns solution of problems of the type $$ \min_{μ ∈ ℳ(Ω)}~ F(μ) + λ \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), $$ where $F$ is a data term, and $ℳ(Ω)$ is the space of Radon measures on the (rectangular) domain $Ω ⊂ ℝ^n$. Implemented are $F(μ)=\frac12\|Aμ-b\|_2^2$ and $F(μ)=\|Aμ-b\|_1$ for the forward operator $A \in 𝕃(ℳ(Ω); ℝ^m)$ modelling a -simple sensor grid. For the 2-norm-squared data term implemented are the -algorithms μFB, μFISTA, and μPDPS from the aforementioned manuscript along with -comparison relaxed and fully corrective conditional gradient methods from the -literature. For the 1-norm data term only the μPDPS is applicable. +simple sensor grid. ## Installation and usage @@ -49,6 +49,7 @@ [rust-GSL]: https://docs.rs/GSL/6.0.0/rgsl/ [Homebrew]: https://brew.sh [arXiv:2212.02991]: https://arxiv.org/abs/2212.02991 + [doi:10.46298/jnsao-2023-10433]: http://doi.org/10.46298/jnsao-2023-10433 ### Building and running the experiments @@ -57,7 +58,7 @@ cargo install --path=. ``` When doing this for the first time, several dependencies will be downloaded. -Now you can run the default experiment with +Now you can run the default set of experiments with ``` pointsource_algs -o results ```