src/sliding_pdps.rs

changeset 52
f0e8704d3f0e
parent 49
6b0db7251ebe
equal deleted inserted replaced
31:6105b5cd8d89 52:f0e8704d3f0e
1 /*!
2 Solver for the point source localisation problem using a sliding
3 primal-dual proximal splitting method.
4 */
5
6 use numeric_literals::replace_float_literals;
7 use serde::{Deserialize, Serialize};
8 //use colored::Colorize;
9 //use nalgebra::{DVector, DMatrix};
10 use std::iter::Iterator;
11
12 use alg_tools::convex::{Conjugable, Prox};
13 use alg_tools::direct_product::Pair;
14 use alg_tools::euclidean::Euclidean;
15 use alg_tools::iterate::AlgIteratorFactory;
16 use alg_tools::linops::{Adjointable, BoundedLinear, IdOp, AXPY, GEMV};
17 use alg_tools::mapping::{DifferentiableRealMapping, Instance, Mapping};
18 use alg_tools::nalgebra_support::ToNalgebraRealField;
19 use alg_tools::norms::{Dist, Norm};
20 use alg_tools::norms::{PairNorm, L2};
21
22 use crate::forward_model::{AdjointProductPairBoundedBy, BoundedCurvature, ForwardModel};
23 use crate::measures::merging::SpikeMerging;
24 use crate::measures::{DiscreteMeasure, Radon, RNDM};
25 use crate::types::*;
26 // use crate::transport::TransportLipschitz;
27 //use crate::tolerance::Tolerance;
28 use crate::fb::*;
29 use crate::plot::{PlotLookup, Plotting, SeqPlotter};
30 use crate::regularisation::SlidingRegTerm;
31 // use crate::dataterm::L2Squared;
32 use crate::dataterm::{calculate_residual, calculate_residual2};
33 use crate::sliding_fb::{
34 aposteriori_transport, initial_transport, TransportConfig, TransportStepLength,
35 };
36
37 /// Settings for [`pointsource_sliding_pdps_pair`].
38 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
39 #[serde(default)]
40 pub struct SlidingPDPSConfig<F: Float> {
41 /// Primal step length scaling.
42 pub τ0: F,
43 /// Primal step length scaling.
44 pub σp0: F,
45 /// Dual step length scaling.
46 pub σd0: F,
47 /// Transport parameters
48 pub transport: TransportConfig<F>,
49 /// Generic parameters
50 pub insertion: FBGenericConfig<F>,
51 }
52
53 #[replace_float_literals(F::cast_from(literal))]
54 impl<F: Float> Default for SlidingPDPSConfig<F> {
55 fn default() -> Self {
56 SlidingPDPSConfig {
57 τ0: 0.99,
58 σd0: 0.05,
59 σp0: 0.99,
60 transport: TransportConfig {
61 θ0: 0.9,
62 ..Default::default()
63 },
64 insertion: Default::default(),
65 }
66 }
67 }
68
69 type MeasureZ<F, Z, const N: usize> = Pair<RNDM<F, N>, Z>;
70
71 /// Iteratively solve the pointsource localisation with an additional variable
72 /// using sliding primal-dual proximal splitting
73 ///
74 /// The parametrisation is as for [`crate::forward_pdps::pointsource_forward_pdps_pair`].
75 #[replace_float_literals(F::cast_from(literal))]
76 pub fn pointsource_sliding_pdps_pair<
77 F,
78 I,
79 A,
80 S,
81 Reg,
82 P,
83 Z,
84 R,
85 Y,
86 /*KOpM, */ KOpZ,
87 H,
88 const N: usize,
89 >(
90 opA: &A,
91 b: &A::Observable,
92 reg: Reg,
93 prox_penalty: &P,
94 config: &SlidingPDPSConfig<F>,
95 iterator: I,
96 mut plotter: SeqPlotter<F, N>,
97 //opKμ : KOpM,
98 opKz: &KOpZ,
99 fnR: &R,
100 fnH: &H,
101 mut z: Z,
102 mut y: Y,
103 ) -> MeasureZ<F, Z, N>
104 where
105 F: Float + ToNalgebraRealField,
106 I: AlgIteratorFactory<IterInfo<F, N>>,
107 A: ForwardModel<MeasureZ<F, Z, N>, F, PairNorm<Radon, L2, L2>, PreadjointCodomain = Pair<S, Z>>
108 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType = F>
109 + BoundedCurvature<FloatType = F>,
110 S: DifferentiableRealMapping<F, N>,
111 for<'b> &'b A::Observable: std::ops::Neg<Output = A::Observable> + Instance<A::Observable>,
112 PlotLookup: Plotting<N>,
113 RNDM<F, N>: SpikeMerging<F>,
114 Reg: SlidingRegTerm<F, N>,
115 P: ProxPenalty<F, S, Reg, N>,
116 // KOpM : Linear<RNDM<F, N>, Codomain=Y>
117 // + GEMV<F, RNDM<F, N>>
118 // + Preadjointable<
119 // RNDM<F, N>, Y,
120 // PreadjointCodomain = S,
121 // >
122 // + TransportLipschitz<L2Squared, FloatType=F>
123 // + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>,
124 // for<'b> KOpM::Preadjoint<'b> : GEMV<F, Y>,
125 // Since Z is Hilbert, we may just as well use adjoints for K_z.
126 KOpZ: BoundedLinear<Z, L2, L2, F, Codomain = Y>
127 + GEMV<F, Z>
128 + Adjointable<Z, Y, AdjointCodomain = Z>,
129 for<'b> KOpZ::Adjoint<'b>: GEMV<F, Y>,
130 Y: AXPY<F> + Euclidean<F, Output = Y> + Clone + ClosedAdd,
131 for<'b> &'b Y: Instance<Y>,
132 Z: AXPY<F, Owned = Z> + Euclidean<F, Output = Z> + Clone + Norm<F, L2> + Dist<F, L2>,
133 for<'b> &'b Z: Instance<Z>,
134 R: Prox<Z, Codomain = F>,
135 H: Conjugable<Y, F, Codomain = F>,
136 for<'b> H::Conjugate<'b>: Prox<Y>,
137 {
138 // Check parameters
139 assert!(
140 config.τ0 > 0.0
141 && config.τ0 < 1.0
142 && config.σp0 > 0.0
143 && config.σp0 < 1.0
144 && config.σd0 > 0.0
145 && config.σp0 * config.σd0 <= 1.0,
146 "Invalid step length parameters"
147 );
148 config.transport.check();
149
150 // Initialise iterates
151 let mut μ = DiscreteMeasure::new();
152 let mut γ1 = DiscreteMeasure::new();
153 let mut residual = calculate_residual(Pair(&μ, &z), opA, b);
154 let zero_z = z.similar_origin();
155
156 // Set up parameters
157 // TODO: maybe this PairNorm doesn't make sense here?
158 // let opAnorm = opA.opnorm_bound(PairNorm(Radon, L2, L2), L2);
159 let bigθ = 0.0; //opKμ.transport_lipschitz_factor(L2Squared);
160 let bigM = 0.0; //opKμ.adjoint_product_bound(&op𝒟).unwrap().sqrt();
161 let nKz = opKz.opnorm_bound(L2, L2);
162 let ℓ = 0.0;
163 let opIdZ = IdOp::new();
164 let (l, l_z) = opA
165 .adjoint_product_pair_bound(prox_penalty, &opIdZ)
166 .unwrap();
167 // We need to satisfy
168 //
169 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1
170 // ^^^^^^^^^^^^^^^^^^^^^^^^^
171 // with 1 > σ_p L_z and 1 > τ L.
172 //
173 // To do so, we first solve σ_p and σ_d from standard PDPS step length condition
174 // ^^^^^ < 1. then we solve τ from the rest.
175 let σ_d = config.σd0 / nKz;
176 let σ_p = config.σp0 / (l_z + config.σd0 * nKz);
177 // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0}
178 // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L)
179 // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0})
180 let φ = 1.0 - config.σp0;
181 let a = 1.0 - σ_p * l_z;
182 let τ = config.τ0 * φ / (σ_d * bigM * a + φ * l);
183 let ψ = 1.0 - τ * l;
184 let β = σ_p * config.σd0 * nKz / a; // σ_p * σ_d * (nKz * nK_z) / a;
185 assert!(β < 1.0);
186 // Now we need κ‖K_μ(π_♯^1 - π_♯^0)γ‖^2 ≤ (1/θ - τ[ℓ_F + ℓ]) ∫ c_2 dγ for κ defined as:
187 let κ = τ * σ_d * ψ / ((1.0 - β) * ψ - τ * σ_d * bigM);
188 // The factor two in the manuscript disappears due to the definition of 𝚹 being
189 // for ‖x-y‖₂² instead of c_2(x, y)=‖x-y‖₂²/2.
190 let (maybe_ℓ_F0, maybe_transport_lip) = opA.curvature_bound_components();
191 let transport_lip = maybe_transport_lip.unwrap();
192 let calculate_θ = |ℓ_F, max_transport| {
193 let ℓ_r = transport_lip * max_transport;
194 config.transport.θ0 / (τ * (ℓ + ℓ_F + ℓ_r) + κ * bigθ * max_transport)
195 };
196 let mut θ_or_adaptive = match maybe_ℓ_F0 {
197 // We assume that the residual is decreasing.
198 Some(ℓ_F0) => TransportStepLength::AdaptiveMax {
199 l: ℓ_F0 * b.norm2(), // TODO: could estimate computing the real reesidual
200 max_transport: 0.0,
201 g: calculate_θ,
202 },
203 None => TransportStepLength::FullyAdaptive {
204 l: F::EPSILON,
205 max_transport: 0.0,
206 g: calculate_θ,
207 },
208 };
209 // Acceleration is not currently supported
210 // let γ = dataterm.factor_of_strong_convexity();
211 let ω = 1.0;
212
213 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
214 // by τ compared to the conditional gradient approach.
215 let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling();
216 let mut ε = tolerance.initial();
217
218 let starH = fnH.conjugate();
219
220 // Statistics
221 let full_stats = |residual: &A::Observable, μ: &RNDM<F, N>, z: &Z, ε, stats| IterInfo {
222 value: residual.norm2_squared_div2()
223 + fnR.apply(z)
224 + reg.apply(μ)
225 + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)),
226 n_spikes: μ.len(),
227 ε,
228 // postprocessing: config.insertion.postprocessing.then(|| μ.clone()),
229 ..stats
230 };
231 let mut stats = IterInfo::new();
232
233 // Run the algorithm
234 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) {
235 // Calculate initial transport
236 let Pair(v, _) = opA.preadjoint().apply(&residual);
237 //opKμ.preadjoint().apply_add(&mut v, y);
238 // We want to proceed as in Example 4.12 but with v and v̆ as in §5.
239 // With A(ν, z) = A_μ ν + A_z z, following Example 5.1, we have
240 // P_ℳ[F'(ν, z) + Ξ(ν, z, y)]= A_ν^*[A_ν ν + A_z z] + K_μ ν = A_ν^*A(ν, z) + K_μ ν,
241 // where A_ν^* becomes a multiplier.
242 // This is much easier with K_μ = 0, which is the only reason why are enforcing it.
243 // TODO: Write a version of initial_transport that can deal with K_μ ≠ 0.
244
245 let (μ_base_masses, mut μ_base_minus_γ0) =
246 initial_transport(&mut γ1, &mut μ, τ, &mut θ_or_adaptive, v);
247
248 // Solve finite-dimensional subproblem several times until the dual variable for the
249 // regularisation term conforms to the assumptions made for the transport above.
250 let (maybe_d, _within_tolerances, mut τv̆, z_new) = 'adapt_transport: loop {
251 // Calculate τv̆ = τA_*(A[μ_transported + μ_transported_base]-b)
252 let residual_μ̆ =
253 calculate_residual2(Pair(&γ1, &z), Pair(&μ_base_minus_γ0, &zero_z), opA, b);
254 let Pair(mut τv̆, τz̆) = opA.preadjoint().apply(residual_μ̆ * τ);
255 // opKμ.preadjoint().gemv(&mut τv̆, τ, y, 1.0);
256
257 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes.
258 let (maybe_d, within_tolerances) = prox_penalty.insert_and_reweigh(
259 &mut μ,
260 &mut τv̆,
261 &γ1,
262 Some(&μ_base_minus_γ0),
263 τ,
264 ε,
265 &config.insertion,
266 &reg,
267 &state,
268 &mut stats,
269 );
270
271 // Do z variable primal update here to able to estimate B_{v̆^k-v^{k+1}}
272 let mut z_new = τz̆;
273 opKz.adjoint().gemv(&mut z_new, -σ_p, &y, -σ_p / τ);
274 z_new = fnR.prox(σ_p, z_new + &z);
275
276 // A posteriori transport adaptation.
277 if aposteriori_transport(
278 &mut γ1,
279 &mut μ,
280 &mut μ_base_minus_γ0,
281 &μ_base_masses,
282 Some(z_new.dist(&z, L2)),
283 ε,
284 &config.transport,
285 ) {
286 break 'adapt_transport (maybe_d, within_tolerances, τv̆, z_new);
287 }
288 };
289
290 stats.untransported_fraction = Some({
291 assert_eq!(μ_base_masses.len(), γ1.len());
292 let (a, b) = stats.untransported_fraction.unwrap_or((0.0, 0.0));
293 let source = μ_base_masses.iter().map(|v| v.abs()).sum();
294 (a + μ_base_minus_γ0.norm(Radon), b + source)
295 });
296 stats.transport_error = Some({
297 assert_eq!(μ_base_masses.len(), γ1.len());
298 let (a, b) = stats.transport_error.unwrap_or((0.0, 0.0));
299 (a + μ.dist_matching(&γ1), b + γ1.norm(Radon))
300 });
301
302 // Merge spikes.
303 // This crucially expects the merge routine to be stable with respect to spike locations,
304 // and not to performing any pruning. That is be to done below simultaneously for γ.
305 let ins = &config.insertion;
306 if ins.merge_now(&state) {
307 stats.merged += prox_penalty.merge_spikes_no_fitness(
308 &mut μ,
309 &mut τv̆,
310 &γ1,
311 Some(&μ_base_minus_γ0),
312 τ,
313 ε,
314 ins,
315 &reg,
316 //Some(|μ̃ : &RNDM<F, N>| calculate_residual(Pair(μ̃, &z), opA, b).norm2_squared_div2()),
317 );
318 }
319
320 // Prune spikes with zero weight. To maintain correct ordering between μ and γ1, also the
321 // latter needs to be pruned when μ is.
322 // TODO: This could do with a two-vector Vec::retain to avoid copies.
323 let μ_new = DiscreteMeasure::from_iter(μ.iter_spikes().filter(|δ| δ.α != F::ZERO).cloned());
324 if μ_new.len() != μ.len() {
325 let mut μ_iter = μ.iter_spikes();
326 γ1.prune_by(|_| μ_iter.next().unwrap().α != F::ZERO);
327 stats.pruned += μ.len() - μ_new.len();
328 μ = μ_new;
329 }
330
331 // Do dual update
332 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}]
333 opKz.gemv(&mut y, σ_d * (1.0 + ω), &z_new, 1.0);
334 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
335 opKz.gemv(&mut y, -σ_d * ω, z, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
336 y = starH.prox(σ_d, y);
337 z = z_new;
338
339 // Update residual
340 residual = calculate_residual(Pair(&μ, &z), opA, b);
341
342 // Update step length parameters
343 // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ);
344
345 // Give statistics if requested
346 let iter = state.iteration();
347 stats.this_iters += 1;
348
349 state.if_verbose(|| {
350 plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv̆), &μ);
351 full_stats(
352 &residual,
353 &μ,
354 &z,
355 ε,
356 std::mem::replace(&mut stats, IterInfo::new()),
357 )
358 });
359
360 // Update main tolerance for next iteration
361 ε = tolerance.update(ε, iter);
362 }
363
364 let fit = |μ̃: &RNDM<F, N>| {
365 (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2()
366 //+ fnR.apply(z) + reg.apply(μ)
367 + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z))
368 };
369
370 μ.merge_spikes_fitness(config.insertion.final_merging_method(), fit, |&v| v);
371 μ.prune();
372 Pair(μ, z)
373 }

mercurial