|
1 /*! |
|
2 Solver for the point source localisation problem using a simplified forward-backward splitting method. |
|
3 |
|
4 Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map. |
|
5 */ |
|
6 |
|
7 use numeric_literals::replace_float_literals; |
|
8 use serde::{Serialize, Deserialize}; |
|
9 use nalgebra::DVector; |
|
10 |
|
11 use alg_tools::iterate::{ |
|
12 AlgIteratorIteration, |
|
13 AlgIterator |
|
14 }; |
|
15 use alg_tools::norms::{L2, Norm}; |
|
16 use alg_tools::linops::Mapping; |
|
17 use alg_tools::bisection_tree::{ |
|
18 BTFN, |
|
19 Bounds, |
|
20 BTSearch, |
|
21 SupportGenerator, |
|
22 LocalAnalysis, |
|
23 }; |
|
24 use alg_tools::mapping::RealMapping; |
|
25 use alg_tools::nalgebra_support::ToNalgebraRealField; |
|
26 |
|
27 use crate::types::*; |
|
28 use crate::measures::{ |
|
29 RNDM, |
|
30 DeltaMeasure, |
|
31 Radon, |
|
32 }; |
|
33 use crate::measures::merging::SpikeMerging; |
|
34 use crate::regularisation::RegTerm; |
|
35 use crate::forward_model::{ |
|
36 ForwardModel, |
|
37 AdjointProductBoundedBy |
|
38 }; |
|
39 use super::{ |
|
40 FBGenericConfig, |
|
41 ProxPenalty, |
|
42 }; |
|
43 |
|
44 /// Radon-norm squared proximal penalty |
|
45 |
|
46 #[derive(Copy,Clone,Serialize,Deserialize)] |
|
47 pub struct RadonSquared; |
|
48 |
|
49 #[replace_float_literals(F::cast_from(literal))] |
|
50 impl<F, GA, BTA, S, Reg, const N : usize> |
|
51 ProxPenalty<F, BTFN<F, GA, BTA, N>, Reg, N> for RadonSquared |
|
52 where |
|
53 F : Float + ToNalgebraRealField, |
|
54 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
|
55 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
|
56 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
57 Reg : RegTerm<F, N>, |
|
58 RNDM<F, N> : SpikeMerging<F>, |
|
59 { |
|
60 type ReturnMapping = BTFN<F, GA, BTA, N>; |
|
61 |
|
62 fn insert_and_reweigh<I>( |
|
63 &self, |
|
64 μ : &mut RNDM<F, N>, |
|
65 τv : &mut BTFN<F, GA, BTA, N>, |
|
66 μ_base : &RNDM<F, N>, |
|
67 ν_delta: Option<&RNDM<F, N>>, |
|
68 τ : F, |
|
69 ε : F, |
|
70 config : &FBGenericConfig<F>, |
|
71 reg : &Reg, |
|
72 _state : &AlgIteratorIteration<I>, |
|
73 stats : &mut IterInfo<F, N>, |
|
74 ) -> (Option<Self::ReturnMapping>, bool) |
|
75 where |
|
76 I : AlgIterator |
|
77 { |
|
78 let mut y = μ_base.masses_dvector(); |
|
79 |
|
80 assert!(μ_base.len() <= μ.len()); |
|
81 |
|
82 'i_and_w: for i in 0..=1 { |
|
83 // Optimise weights |
|
84 if μ.len() > 0 { |
|
85 // Form finite-dimensional subproblem. The subproblem references to the original μ^k |
|
86 // from the beginning of the iteration are all contained in the immutable c and g. |
|
87 // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional |
|
88 // problems have not yet been updated to sign change. |
|
89 let g̃ = DVector::from_iterator(μ.len(), |
|
90 μ.iter_locations() |
|
91 .map(|ζ| - F::to_nalgebra_mixed(τv.apply(ζ)))); |
|
92 let mut x = μ.masses_dvector(); |
|
93 y.extend(std::iter::repeat(0.0.to_nalgebra_mixed()).take(0.max(x.len()-y.len()))); |
|
94 assert_eq!(y.len(), x.len()); |
|
95 // Solve finite-dimensional subproblem. |
|
96 // TODO: This assumes that ν_delta has no common locations with μ-μ_base, to |
|
97 // ignore it. |
|
98 stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config); |
|
99 |
|
100 // Update masses of μ based on solution of finite-dimensional subproblem. |
|
101 μ.set_masses_dvector(&x); |
|
102 } |
|
103 |
|
104 if i>0 { |
|
105 // Simple debugging test to see if more inserts would be needed. Doesn't seem so. |
|
106 //let n = μ.dist_matching(μ_base); |
|
107 //println!("{:?}", reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n)); |
|
108 break 'i_and_w |
|
109 } |
|
110 |
|
111 // Calculate ‖μ - μ_base‖_ℳ |
|
112 // TODO: This assumes that ν_delta has no common locations with μ-μ_base. |
|
113 let n = μ.dist_matching(μ_base) + ν_delta.map_or(0.0, |ν| ν.norm(Radon)); |
|
114 |
|
115 // Find a spike to insert, if needed. |
|
116 // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ, |
|
117 // which are supposed to have been guaranteed by the finite-dimensional weight optimisation. |
|
118 match reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n) { |
|
119 None => { break 'i_and_w }, |
|
120 Some((ξ, _v_ξ, _in_bounds)) => { |
|
121 // Weight is found out by running the finite-dimensional optimisation algorithm |
|
122 // above |
|
123 *μ += DeltaMeasure { x : ξ, α : 0.0 }; |
|
124 stats.inserted += 1; |
|
125 } |
|
126 }; |
|
127 } |
|
128 |
|
129 (None, true) |
|
130 } |
|
131 |
|
132 fn merge_spikes( |
|
133 &self, |
|
134 μ : &mut RNDM<F, N>, |
|
135 τv : &mut BTFN<F, GA, BTA, N>, |
|
136 μ_base : &RNDM<F, N>, |
|
137 ν_delta: Option<&RNDM<F, N>>, |
|
138 τ : F, |
|
139 ε : F, |
|
140 config : &FBGenericConfig<F>, |
|
141 reg : &Reg, |
|
142 fitness : Option<impl Fn(&RNDM<F, N>) -> F>, |
|
143 ) -> usize |
|
144 { |
|
145 if config.fitness_merging { |
|
146 if let Some(f) = fitness { |
|
147 return μ.merge_spikes_fitness(config.merging, f, |&v| v) |
|
148 .1 |
|
149 } |
|
150 } |
|
151 μ.merge_spikes(config.merging, |μ_candidate| { |
|
152 // Important: μ_candidate's new points are afterwards, |
|
153 // and do not conflict with μ_base. |
|
154 // TODO: could simplify to requiring μ_base instead of μ_radon. |
|
155 // but may complicate with sliding base's exgtra points that need to be |
|
156 // after μ_candidate's extra points. |
|
157 // TODO: doesn't seem to work, maybe need to merge μ_base as well? |
|
158 // Although that doesn't seem to make sense. |
|
159 let μ_radon = match ν_delta { |
|
160 None => μ_candidate.sub_matching(μ_base), |
|
161 Some(ν) => μ_candidate.sub_matching(μ_base) - ν, |
|
162 }; |
|
163 reg.verify_merge_candidate_radonsq(τv, μ_candidate, τ, ε, &config, &μ_radon) |
|
164 //let n = μ_candidate.dist_matching(μ_base); |
|
165 //reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n).is_none() |
|
166 }) |
|
167 } |
|
168 } |
|
169 |
|
170 |
|
171 impl<F, A, const N : usize> AdjointProductBoundedBy<RNDM<F, N>, RadonSquared> |
|
172 for A |
|
173 where |
|
174 F : Float, |
|
175 A : ForwardModel<RNDM<F, N>, F> |
|
176 { |
|
177 type FloatType = F; |
|
178 |
|
179 fn adjoint_product_bound(&self, _ : &RadonSquared) -> Option<Self::FloatType> { |
|
180 self.opnorm_bound(Radon, L2).powi(2).into() |
|
181 } |
|
182 } |