src/forward_pdps.rs

changeset 52
f0e8704d3f0e
parent 39
6316d68b58af
equal deleted inserted replaced
31:6105b5cd8d89 52:f0e8704d3f0e
1 /*!
2 Solver for the point source localisation problem using a
3 primal-dual proximal splitting with a forward step.
4 */
5
6 use numeric_literals::replace_float_literals;
7 use serde::{Serialize, Deserialize};
8
9 use alg_tools::iterate::AlgIteratorFactory;
10 use alg_tools::euclidean::Euclidean;
11 use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance};
12 use alg_tools::norms::Norm;
13 use alg_tools::direct_product::Pair;
14 use alg_tools::nalgebra_support::ToNalgebraRealField;
15 use alg_tools::linops::{
16 BoundedLinear, AXPY, GEMV, Adjointable, IdOp,
17 };
18 use alg_tools::convex::{Conjugable, Prox};
19 use alg_tools::norms::{L2, PairNorm};
20
21 use crate::types::*;
22 use crate::measures::{DiscreteMeasure, Radon, RNDM};
23 use crate::measures::merging::SpikeMerging;
24 use crate::forward_model::{
25 ForwardModel,
26 AdjointProductPairBoundedBy,
27 };
28 use crate::plot::{
29 SeqPlotter,
30 Plotting,
31 PlotLookup
32 };
33 use crate::fb::*;
34 use crate::regularisation::RegTerm;
35 use crate::dataterm::calculate_residual;
36
37 /// Settings for [`pointsource_forward_pdps_pair`].
38 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
39 #[serde(default)]
40 pub struct ForwardPDPSConfig<F : Float> {
41 /// Primal step length scaling.
42 pub τ0 : F,
43 /// Primal step length scaling.
44 pub σp0 : F,
45 /// Dual step length scaling.
46 pub σd0 : F,
47 /// Generic parameters
48 pub insertion : FBGenericConfig<F>,
49 }
50
51 #[replace_float_literals(F::cast_from(literal))]
52 impl<F : Float> Default for ForwardPDPSConfig<F> {
53 fn default() -> Self {
54 ForwardPDPSConfig {
55 τ0 : 0.99,
56 σd0 : 0.05,
57 σp0 : 0.99,
58 insertion : Default::default()
59 }
60 }
61 }
62
63 type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>;
64
65 /// Iteratively solve the pointsource localisation with an additional variable
66 /// using primal-dual proximal splitting with a forward step.
67 #[replace_float_literals(F::cast_from(literal))]
68 pub fn pointsource_forward_pdps_pair<
69 F, I, A, S, Reg, P, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize
70 >(
71 opA : &A,
72 b : &A::Observable,
73 reg : Reg,
74 prox_penalty : &P,
75 config : &ForwardPDPSConfig<F>,
76 iterator : I,
77 mut plotter : SeqPlotter<F, N>,
78 //opKμ : KOpM,
79 opKz : &KOpZ,
80 fnR : &R,
81 fnH : &H,
82 mut z : Z,
83 mut y : Y,
84 ) -> MeasureZ<F, Z, N>
85 where
86 F : Float + ToNalgebraRealField,
87 I : AlgIteratorFactory<IterInfo<F, N>>,
88 A : ForwardModel<
89 MeasureZ<F, Z, N>,
90 F,
91 PairNorm<Radon, L2, L2>,
92 PreadjointCodomain = Pair<S, Z>,
93 >
94 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType=F>,
95 S: DifferentiableRealMapping<F, N>,
96 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>,
97 PlotLookup : Plotting<N>,
98 RNDM<F, N> : SpikeMerging<F>,
99 Reg : RegTerm<F, N>,
100 P : ProxPenalty<F, S, Reg, N>,
101 KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y>
102 + GEMV<F, Z>
103 + Adjointable<Z, Y, AdjointCodomain = Z>,
104 for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>,
105 Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd,
106 for<'b> &'b Y : Instance<Y>,
107 Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>,
108 for<'b> &'b Z : Instance<Z>,
109 R : Prox<Z, Codomain=F>,
110 H : Conjugable<Y, F, Codomain=F>,
111 for<'b> H::Conjugate<'b> : Prox<Y>,
112 {
113
114 // Check parameters
115 assert!(config.τ0 > 0.0 &&
116 config.τ0 < 1.0 &&
117 config.σp0 > 0.0 &&
118 config.σp0 < 1.0 &&
119 config.σd0 > 0.0 &&
120 config.σp0 * config.σd0 <= 1.0,
121 "Invalid step length parameters");
122
123 // Initialise iterates
124 let mut μ = DiscreteMeasure::new();
125 let mut residual = calculate_residual(Pair(&μ, &z), opA, b);
126
127 // Set up parameters
128 let bigM = 0.0; //opKμ.adjoint_product_bound(prox_penalty).unwrap().sqrt();
129 let nKz = opKz.opnorm_bound(L2, L2);
130 let opIdZ = IdOp::new();
131 let (l, l_z) = opA.adjoint_product_pair_bound(prox_penalty, &opIdZ).unwrap();
132 // We need to satisfy
133 //
134 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1
135 // ^^^^^^^^^^^^^^^^^^^^^^^^^
136 // with 1 > σ_p L_z and 1 > τ L.
137 //
138 // To do so, we first solve σ_p and σ_d from standard PDPS step length condition
139 // ^^^^^ < 1. then we solve τ from the rest.
140 let σ_d = config.σd0 / nKz;
141 let σ_p = config.σp0 / (l_z + config.σd0 * nKz);
142 // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0}
143 // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L)
144 // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0})
145 let φ = 1.0 - config.σp0;
146 let a = 1.0 - σ_p * l_z;
147 let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l );
148 // Acceleration is not currently supported
149 // let γ = dataterm.factor_of_strong_convexity();
150 let ω = 1.0;
151
152 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
153 // by τ compared to the conditional gradient approach.
154 let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling();
155 let mut ε = tolerance.initial();
156
157 let starH = fnH.conjugate();
158
159 // Statistics
160 let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo {
161 value : residual.norm2_squared_div2() + fnR.apply(z)
162 + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)),
163 n_spikes : μ.len(),
164 ε,
165 // postprocessing: config.insertion.postprocessing.then(|| μ.clone()),
166 .. stats
167 };
168 let mut stats = IterInfo::new();
169
170 // Run the algorithm
171 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) {
172 // Calculate initial transport
173 let Pair(mut τv, τz) = opA.preadjoint().apply(residual * τ);
174 let μ_base = μ.clone();
175
176 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes.
177 let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh(
178 &mut μ, &mut τv, &μ_base, None,
179 τ, ε, &config.insertion,
180 &reg, &state, &mut stats,
181 );
182
183 // Merge spikes.
184 // This crucially expects the merge routine to be stable with respect to spike locations,
185 // and not to performing any pruning. That is be to done below simultaneously for γ.
186 // Merge spikes.
187 // This crucially expects the merge routine to be stable with respect to spike locations,
188 // and not to performing any pruning. That is be to done below simultaneously for γ.
189 let ins = &config.insertion;
190 if ins.merge_now(&state) {
191 stats.merged += prox_penalty.merge_spikes_no_fitness(
192 &mut μ, &mut τv, &μ_base, None, τ, ε, ins, &reg,
193 //Some(|μ̃ : &RNDM<F, N>| calculate_residual(Pair(μ̃, &z), opA, b).norm2_squared_div2()),
194 );
195 }
196
197 // Prune spikes with zero weight.
198 stats.pruned += prune_with_stats(&mut μ);
199
200 // Do z variable primal update
201 let mut z_new = τz;
202 opKz.adjoint().gemv(&mut z_new, -σ_p, &y, -σ_p/τ);
203 z_new = fnR.prox(σ_p, z_new + &z);
204 // Do dual update
205 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}]
206 opKz.gemv(&mut y, σ_d*(1.0 + ω), &z_new, 1.0);
207 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
208 opKz.gemv(&mut y, -σ_d*ω, z, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
209 y = starH.prox(σ_d, y);
210 z = z_new;
211
212 // Update residual
213 residual = calculate_residual(Pair(&μ, &z), opA, b);
214
215 // Update step length parameters
216 // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ);
217
218 // Give statistics if requested
219 let iter = state.iteration();
220 stats.this_iters += 1;
221
222 state.if_verbose(|| {
223 plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ);
224 full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new()))
225 });
226
227 // Update main tolerance for next iteration
228 ε = tolerance.update(ε, iter);
229 }
230
231 let fit = |μ̃ : &RNDM<F, N>| {
232 (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2()
233 //+ fnR.apply(z) + reg.apply(μ)
234 + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z))
235 };
236
237 μ.merge_spikes_fitness(config.insertion.final_merging_method(), fit, |&v| v);
238 μ.prune();
239 Pair(μ, z)
240 }

mercurial