| |
1 |
| |
2 //! Things for constructing new kernels from component kernels and traits for analysing them |
| |
3 use serde::Serialize; |
| |
4 use numeric_literals::replace_float_literals; |
| |
5 |
| |
6 use alg_tools::types::*; |
| |
7 use alg_tools::norms::*; |
| |
8 use alg_tools::loc::Loc; |
| |
9 use alg_tools::sets::Cube; |
| |
10 use alg_tools::bisection_tree::{ |
| |
11 Support, |
| |
12 Bounds, |
| |
13 LocalAnalysis, |
| |
14 GlobalAnalysis, |
| |
15 Bounded, |
| |
16 }; |
| |
17 use alg_tools::mapping::Apply; |
| |
18 use alg_tools::maputil::{array_init, map2}; |
| |
19 use alg_tools::sets::SetOrd; |
| |
20 |
| |
21 use crate::fourier::Fourier; |
| |
22 |
| |
23 /// Representation of the product of two kernels. |
| |
24 /// |
| |
25 /// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. |
| |
26 /// |
| |
27 /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! |
| |
28 #[derive(Copy,Clone,Serialize,Debug)] |
| |
29 pub struct SupportProductFirst<A, B>( |
| |
30 /// First kernel |
| |
31 pub A, |
| |
32 /// Second kernel |
| |
33 pub B |
| |
34 ); |
| |
35 |
| |
36 impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> |
| |
37 for SupportProductFirst<A, B> |
| |
38 where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, |
| |
39 B : for<'a> Apply<&'a Loc<F, N>, Output=F> { |
| |
40 type Output = F; |
| |
41 #[inline] |
| |
42 fn apply(&self, x : Loc<F, N>) -> Self::Output { |
| |
43 self.0.apply(&x) * self.1.apply(&x) |
| |
44 } |
| |
45 } |
| |
46 |
| |
47 impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> |
| |
48 for SupportProductFirst<A, B> |
| |
49 where A : Apply<&'a Loc<F, N>, Output=F>, |
| |
50 B : Apply<&'a Loc<F, N>, Output=F> { |
| |
51 type Output = F; |
| |
52 #[inline] |
| |
53 fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { |
| |
54 self.0.apply(x) * self.1.apply(x) |
| |
55 } |
| |
56 } |
| |
57 |
| |
58 impl<'a, A, B, F : Float, const N : usize> Support<F, N> |
| |
59 for SupportProductFirst<A, B> |
| |
60 where A : Support<F, N>, |
| |
61 B : Support<F, N> { |
| |
62 #[inline] |
| |
63 fn support_hint(&self) -> Cube<F, N> { |
| |
64 self.0.support_hint() |
| |
65 } |
| |
66 |
| |
67 #[inline] |
| |
68 fn in_support(&self, x : &Loc<F, N>) -> bool { |
| |
69 self.0.in_support(x) |
| |
70 } |
| |
71 |
| |
72 #[inline] |
| |
73 fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { |
| |
74 self.0.bisection_hint(cube) |
| |
75 } |
| |
76 } |
| |
77 |
| |
78 impl<'a, A, B, F : Float> GlobalAnalysis<F, Bounds<F>> |
| |
79 for SupportProductFirst<A, B> |
| |
80 where A : GlobalAnalysis<F, Bounds<F>>, |
| |
81 B : GlobalAnalysis<F, Bounds<F>> { |
| |
82 #[inline] |
| |
83 fn global_analysis(&self) -> Bounds<F> { |
| |
84 self.0.global_analysis() * self.1.global_analysis() |
| |
85 } |
| |
86 } |
| |
87 |
| |
88 impl<'a, A, B, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> |
| |
89 for SupportProductFirst<A, B> |
| |
90 where A : LocalAnalysis<F, Bounds<F>, N>, |
| |
91 B : LocalAnalysis<F, Bounds<F>, N> { |
| |
92 #[inline] |
| |
93 fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { |
| |
94 self.0.local_analysis(cube) * self.1.local_analysis(cube) |
| |
95 } |
| |
96 } |
| |
97 |
| |
98 /// Representation of the sum of two kernels |
| |
99 /// |
| |
100 /// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. |
| |
101 /// |
| |
102 /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! |
| |
103 #[derive(Copy,Clone,Serialize,Debug)] |
| |
104 pub struct SupportSum<A, B>( |
| |
105 /// First kernel |
| |
106 pub A, |
| |
107 /// Second kernel |
| |
108 pub B |
| |
109 ); |
| |
110 |
| |
111 impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> |
| |
112 for SupportSum<A, B> |
| |
113 where A : Apply<&'a Loc<F, N>, Output=F>, |
| |
114 B : Apply<&'a Loc<F, N>, Output=F> { |
| |
115 type Output = F; |
| |
116 #[inline] |
| |
117 fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { |
| |
118 self.0.apply(x) + self.1.apply(x) |
| |
119 } |
| |
120 } |
| |
121 |
| |
122 impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> |
| |
123 for SupportSum<A, B> |
| |
124 where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, |
| |
125 B : for<'a> Apply<&'a Loc<F, N>, Output=F> { |
| |
126 type Output = F; |
| |
127 #[inline] |
| |
128 fn apply(&self, x : Loc<F, N>) -> Self::Output { |
| |
129 self.0.apply(&x) + self.1.apply(&x) |
| |
130 } |
| |
131 } |
| |
132 |
| |
133 impl<'a, A, B, F : Float, const N : usize> Support<F, N> |
| |
134 for SupportSum<A, B> |
| |
135 where A : Support<F, N>, |
| |
136 B : Support<F, N>, |
| |
137 Cube<F, N> : SetOrd { |
| |
138 #[inline] |
| |
139 fn support_hint(&self) -> Cube<F, N> { |
| |
140 self.0.support_hint().common(&self.1.support_hint()) |
| |
141 } |
| |
142 |
| |
143 #[inline] |
| |
144 fn in_support(&self, x : &Loc<F, N>) -> bool { |
| |
145 self.0.in_support(x) || self.1.in_support(x) |
| |
146 } |
| |
147 |
| |
148 #[inline] |
| |
149 fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { |
| |
150 map2(self.0.bisection_hint(cube), |
| |
151 self.1.bisection_hint(cube), |
| |
152 |a, b| a.or(b)) |
| |
153 } |
| |
154 } |
| |
155 |
| |
156 impl<'a, A, B, F : Float> GlobalAnalysis<F, Bounds<F>> |
| |
157 for SupportSum<A, B> |
| |
158 where A : GlobalAnalysis<F, Bounds<F>>, |
| |
159 B : GlobalAnalysis<F, Bounds<F>> { |
| |
160 #[inline] |
| |
161 fn global_analysis(&self) -> Bounds<F> { |
| |
162 self.0.global_analysis() + self.1.global_analysis() |
| |
163 } |
| |
164 } |
| |
165 |
| |
166 impl<'a, A, B, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> |
| |
167 for SupportSum<A, B> |
| |
168 where A : LocalAnalysis<F, Bounds<F>, N>, |
| |
169 B : LocalAnalysis<F, Bounds<F>, N>, |
| |
170 Cube<F, N> : SetOrd { |
| |
171 #[inline] |
| |
172 fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { |
| |
173 self.0.local_analysis(cube) + self.1.local_analysis(cube) |
| |
174 } |
| |
175 } |
| |
176 |
| |
177 /// Representation of the convolution of two kernels. |
| |
178 /// |
| |
179 /// The kernels typically implement [`Support`]s and [`Mapping`][alg_tools::mapping::Mapping]. |
| |
180 // |
| |
181 /// Trait implementations have to be on a case-by-case basis. |
| |
182 #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] |
| |
183 pub struct Convolution<A, B>( |
| |
184 /// First kernel |
| |
185 pub A, |
| |
186 /// Second kernel |
| |
187 pub B |
| |
188 ); |
| |
189 |
| |
190 /// Representation of the autoconvolution of a kernel. |
| |
191 /// |
| |
192 /// The kernel typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. |
| |
193 /// |
| |
194 /// Trait implementations have to be on a case-by-case basis. |
| |
195 #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] |
| |
196 pub struct AutoConvolution<A>( |
| |
197 /// The kernel to be autoconvolved |
| |
198 pub A |
| |
199 ); |
| |
200 |
| |
201 /// Representation a multi-dimensional product of a one-dimensional kernel. |
| |
202 /// |
| |
203 /// For $G: ℝ → ℝ$, this is the function $F(x\_1, …, x\_n) := \prod_{i=1}^n G(x\_i)$. |
| |
204 /// The kernel $G$ typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping] |
| |
205 /// on [`Loc<F, 1>`]. Then the product implements them on [`Loc<F, N>`]. |
| |
206 #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] |
| |
207 struct UniformProduct<G, const N : usize>( |
| |
208 /// The one-dimensional kernel |
| |
209 G |
| |
210 ); |
| |
211 |
| |
212 impl<'a, G, F : Float, const N : usize> Apply<&'a Loc<F, N>> |
| |
213 for UniformProduct<G, N> |
| |
214 where G : Apply<Loc<F, 1>, Output=F> { |
| |
215 type Output = F; |
| |
216 #[inline] |
| |
217 fn apply(&self, x : &'a Loc<F, N>) -> F { |
| |
218 x.iter().map(|&y| self.0.apply(Loc([y]))).product() |
| |
219 } |
| |
220 } |
| |
221 |
| |
222 impl<G, F : Float, const N : usize> Apply<Loc<F, N>> |
| |
223 for UniformProduct<G, N> |
| |
224 where G : Apply<Loc<F, 1>, Output=F> { |
| |
225 type Output = F; |
| |
226 #[inline] |
| |
227 fn apply(&self, x : Loc<F, N>) -> F { |
| |
228 x.into_iter().map(|y| self.0.apply(Loc([y]))).product() |
| |
229 } |
| |
230 } |
| |
231 |
| |
232 impl<G, F : Float, const N : usize> Support<F, N> |
| |
233 for UniformProduct<G, N> |
| |
234 where G : Support<F, 1> { |
| |
235 #[inline] |
| |
236 fn support_hint(&self) -> Cube<F, N> { |
| |
237 let [a] : [[F; 2]; 1] = self.0.support_hint().into(); |
| |
238 array_init(|| a.clone()).into() |
| |
239 } |
| |
240 |
| |
241 #[inline] |
| |
242 fn in_support(&self, x : &Loc<F, N>) -> bool { |
| |
243 x.iter().all(|&y| self.0.in_support(&Loc([y]))) |
| |
244 } |
| |
245 |
| |
246 #[inline] |
| |
247 fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { |
| |
248 cube.map(|a, b| { |
| |
249 let [h] = self.0.bisection_hint(&[[a, b]].into()); |
| |
250 h |
| |
251 }) |
| |
252 } |
| |
253 } |
| |
254 |
| |
255 impl<G, F : Float, const N : usize> GlobalAnalysis<F, Bounds<F>> |
| |
256 for UniformProduct<G, N> |
| |
257 where G : GlobalAnalysis<F, Bounds<F>> { |
| |
258 #[inline] |
| |
259 fn global_analysis(&self) -> Bounds<F> { |
| |
260 let g = self.0.global_analysis(); |
| |
261 (0..N).map(|_| g).product() |
| |
262 } |
| |
263 } |
| |
264 |
| |
265 impl<G, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> |
| |
266 for UniformProduct<G, N> |
| |
267 where G : LocalAnalysis<F, Bounds<F>, 1> { |
| |
268 #[inline] |
| |
269 fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { |
| |
270 cube.iter_coords().map( |
| |
271 |&[a, b]| self.0.local_analysis(&([[a, b]].into())) |
| |
272 ).product() |
| |
273 } |
| |
274 } |
| |
275 |
| |
276 macro_rules! product_lpnorm { |
| |
277 ($lp:ident) => { |
| |
278 impl<G, F : Float, const N : usize> Norm<F, $lp> |
| |
279 for UniformProduct<G, N> |
| |
280 where G : Norm<F, $lp> { |
| |
281 #[inline] |
| |
282 fn norm(&self, lp : $lp) -> F { |
| |
283 self.0.norm(lp).powi(N as i32) |
| |
284 } |
| |
285 } |
| |
286 } |
| |
287 } |
| |
288 |
| |
289 product_lpnorm!(L1); |
| |
290 product_lpnorm!(L2); |
| |
291 product_lpnorm!(Linfinity); |
| |
292 |
| |
293 |
| |
294 /// Trait for bounding one kernel with respect to another. |
| |
295 /// |
| |
296 /// The type `F` is the scalar field, and `T` another kernel to which `Self` is compared. |
| |
297 pub trait BoundedBy<F : Num, T> { |
| |
298 /// Calclate a bounding factor $c$ such that the Fourier transforms $ℱ\[v\] ≤ c ℱ\[u\]$ for |
| |
299 /// $v$ `self` and $u$ `other`. |
| |
300 /// |
| |
301 /// If no such factors exits, `None` is returned. |
| |
302 fn bounding_factor(&self, other : &T) -> Option<F>; |
| |
303 } |
| |
304 |
| |
305 /// This [`BoundedBy`] implementation bounds $(uv) * (uv)$ by $(ψ * ψ) u$. |
| |
306 #[replace_float_literals(F::cast_from(literal))] |
| |
307 impl<F, C, BaseP> |
| |
308 BoundedBy<F, SupportProductFirst<AutoConvolution<C>, BaseP>> |
| |
309 for AutoConvolution<SupportProductFirst<C, BaseP>> |
| |
310 where F : Float, |
| |
311 C : Clone + PartialEq, |
| |
312 BaseP : Fourier<F> + PartialOrd, // TODO: replace by BoundedBy, |
| |
313 <BaseP as Fourier<F>>::Transformed : Bounded<F> + Norm<F, L1> { |
| |
314 |
| |
315 fn bounding_factor(&self, kernel : &SupportProductFirst<AutoConvolution<C>, BaseP>) -> Option<F> { |
| |
316 let SupportProductFirst(AutoConvolution(ref cutoff2), base_spread2) = kernel; |
| |
317 let AutoConvolution(SupportProductFirst(ref cutoff, ref base_spread)) = self; |
| |
318 let v̂ = base_spread.fourier(); |
| |
319 |
| |
320 // Verify that the cut-off and ideal physical model (base spread) are the same. |
| |
321 if cutoff == cutoff2 |
| |
322 && base_spread <= base_spread2 |
| |
323 && v̂.bounds().lower() >= 0.0 { |
| |
324 // Calculate the factor between the convolution approximation |
| |
325 // `AutoConvolution<SupportProductFirst<C, BaseP>>` of $A_*A$ and the |
| |
326 // kernel of the seminorm. This depends on the physical model P being |
| |
327 // `SupportProductFirst<C, BaseP>` with the kernel `K` being |
| |
328 // a `SupportSum` involving `SupportProductFirst<AutoConvolution<C>, BaseP>`. |
| |
329 Some(v̂.norm(L1)) |
| |
330 } else { |
| |
331 // We cannot compare |
| |
332 None |
| |
333 } |
| |
334 } |
| |
335 } |
| |
336 |
| |
337 impl<F : Float, A, B, C> BoundedBy<F, SupportSum<B, C>> for A |
| |
338 where A : BoundedBy<F, B>, |
| |
339 C : Bounded<F> { |
| |
340 |
| |
341 #[replace_float_literals(F::cast_from(literal))] |
| |
342 fn bounding_factor(&self, SupportSum(ref kernel1, kernel2) : &SupportSum<B, C>) -> Option<F> { |
| |
343 if kernel2.bounds().lower() >= 0.0 { |
| |
344 self.bounding_factor(kernel1) |
| |
345 } else { |
| |
346 None |
| |
347 } |
| |
348 } |
| |
349 } |
| |
350 |
| |
351 /// Generates on $[a, b]$ [`Support::support_hint`] for a symmetric interval $[-r, r]$. |
| |
352 /// |
| |
353 /// It will attempt to place the subdivision point at $-r$ or $r$. |
| |
354 /// If neither of these points lies within $[a, b]$, `None` is returned. |
| |
355 #[inline] |
| |
356 pub(super) fn symmetric_interval_hint<F : Float>(r : F, a : F, b : F) -> Option<F> { |
| |
357 if a < -r && -r < b { |
| |
358 Some(-r) |
| |
359 } else if a < r && r < b { |
| |
360 Some(r) |
| |
361 } else { |
| |
362 None |
| |
363 } |
| |
364 } |
| |
365 |
| |
366 /// Generates on $[a, b]$ [`Support::support_hint`] for a function with monotone derivative, |
| |
367 /// support on $[-r, r]$ and peak at $0. |
| |
368 /// |
| |
369 /// It will attempt to place the subdivision point at $-r$, $r$, or $0$, depending on which |
| |
370 /// gives the longer length for the shorter of the two subintervals. If none of these points |
| |
371 /// lies within $[a, b]$, or the resulting interval would be shorter than $0.3r$, `None` is |
| |
372 /// returned. |
| |
373 #[replace_float_literals(F::cast_from(literal))] |
| |
374 #[inline] |
| |
375 pub(super) fn symmetric_peak_hint<F : Float>(r : F, a : F, b : F) -> Option<F> { |
| |
376 let stage1 = if a < -r { |
| |
377 if b <= -r { |
| |
378 None |
| |
379 } else if a + r < -b { |
| |
380 Some(-r) |
| |
381 } else { |
| |
382 Some(0.0) |
| |
383 } |
| |
384 } else if a < 0.0 { |
| |
385 if b <= 0.0 { |
| |
386 None |
| |
387 } else if a < r - b { |
| |
388 Some(0.0) |
| |
389 } else { |
| |
390 Some(r) |
| |
391 } |
| |
392 } else if a < r && b > r { |
| |
393 Some(r) |
| |
394 } else { |
| |
395 None |
| |
396 }; |
| |
397 |
| |
398 // Ignore stage1 hint if either side of subdivision would be just a small fraction of the |
| |
399 // interval |
| |
400 match stage1 { |
| |
401 Some(h) if (h - a).min(b-h) >= 0.3 * r => Some(h), |
| |
402 _ => None |
| |
403 } |
| |
404 } |