1 /*! |
1 /*! |
2 Iterative algorithms for solving the finite-dimensional subproblem without constraints. |
2 Iterative algorithms for solving the finite-dimensional subproblem without constraints. |
3 */ |
3 */ |
4 |
4 |
|
5 use itertools::izip; |
5 use nalgebra::DVector; |
6 use nalgebra::DVector; |
6 use numeric_literals::replace_float_literals; |
7 use numeric_literals::replace_float_literals; |
7 use itertools::izip; |
|
8 use std::cmp::Ordering::*; |
8 use std::cmp::Ordering::*; |
9 |
9 |
10 use std::iter::zip; |
10 use alg_tools::iterate::{AlgIteratorFactory, AlgIteratorState}; |
11 use alg_tools::iterate::{ |
|
12 AlgIteratorFactory, |
|
13 AlgIteratorState, |
|
14 }; |
|
15 use alg_tools::nalgebra_support::ToNalgebraRealField; |
11 use alg_tools::nalgebra_support::ToNalgebraRealField; |
16 use alg_tools::nanleast::NaNLeast; |
12 use alg_tools::nanleast::NaNLeast; |
17 use alg_tools::norms::{Dist, L1}; |
13 use alg_tools::norms::{Dist, L1}; |
18 |
14 use std::iter::zip; |
|
15 |
|
16 use super::l1squared_nonneg::max_interval_dist_to_zero; |
|
17 use super::unconstrained::soft_thresholding; |
|
18 use super::{InnerMethod, InnerSettings}; |
19 use crate::types::*; |
19 use crate::types::*; |
20 use super::{ |
20 |
21 InnerMethod, |
21 /// Calculate $\prox_f(x)$ for $f(x)=\frac{β}{2}\norm{x-y}_1^2$. |
22 InnerSettings |
|
23 }; |
|
24 use super::unconstrained::soft_thresholding; |
|
25 use super::l1squared_nonneg::max_interval_dist_to_zero; |
|
26 |
|
27 /// Calculate $prox_f(x)$ for $f(x)=\frac{β}{2}\norm{x-y}_1^2$. |
|
28 /// |
22 /// |
29 /// To derive an algorithm for this, we can assume that $y=0$, as |
23 /// To derive an algorithm for this, we can assume that $y=0$, as |
30 /// $prox_f(x) = prox_{f_0}(x - y) - y$ for $f_0=\frac{β}{2}\norm{x}_1^2$. |
24 /// $\prox\_f(x) = \prox\_{f_0}(x - y) - y$ for $f\_0=\frac{β}{2}\norm{x}\_1^2$. |
31 /// Now, the optimality conditions for $w = prox_f(x)$ are |
25 /// Now, the optimality conditions for $w = \prox\_f(x)$ are |
32 /// $$\tag{*} |
26 /// $$ |
33 /// 0 ∈ w-x + β\norm{w}_1\sign w. |
27 /// 0 ∈ w-x + β\norm{w}\_1\sign w. |
34 /// $$ |
28 /// $$ |
35 /// Clearly then $w = \soft_{β\norm{w}_1}(x)$. |
29 /// Clearly then $w = \soft\_{β\norm{w}\_1}(x)$. |
36 /// Thus the components of $x$ with smallest absolute value will be zeroed out. |
30 /// Thus the components of $x$ with smallest absolute value will be zeroed out. |
37 /// Denoting by $w'$ the non-zero components, and by $x'$ the corresponding components |
31 /// Denoting by $w'$ the non-zero components, and by $x'$ the corresponding components |
38 /// of $x$, and by $m$ their count, multipying the corresponding lines of (*) by $\sign x'$, |
32 /// of $x$, and by $m$ their count, multipying the corresponding lines of (*) by $\sign x'$, |
39 /// we obtain |
33 /// we obtain |
40 /// $$ |
34 /// $$ |
41 /// \norm{x'}_1 = (1+βm)\norm{w'}_1. |
35 /// \norm{x'}\_1 = (1+βm)\norm{w'}\_1. |
42 /// $$ |
36 /// $$ |
43 /// That is, $\norm{w}_1=\norm{w'}_1=\norm{x'}_1/(1+βm)$. |
37 /// That is, $\norm{w}\_1=\norm{w'}\_1=\norm{x'}\_1/(1+βm)$. |
44 /// Thus, sorting $x$ by absolute value, and sequentially in order eliminating the smallest |
38 /// Thus, sorting $x$ by absolute value, and sequentially in order eliminating the smallest |
45 /// elements, we can easily calculate what $\norm{w}_1$ should be for that choice, and |
39 /// elements, we can easily calculate what $\norm{w}\_1$ should be for that choice, and |
46 /// then easily calculate $w = \soft_{β\norm{w}_1}(x)$. We just have to verify that |
40 /// then easily calculate $w = \soft_{β\norm{w}\_1}(x)$. We just have to verify that |
47 /// the resulting $w$ has the same norm. There's a shortcut to this, as we work |
41 /// the resulting $w$ has the same norm. There's a shortcut to this, as we work |
48 /// sequentially: just check that the smallest assumed-nonzero component $i$ satisfies the |
42 /// sequentially: just check that the smallest assumed-nonzero component $i$ satisfies the |
49 /// condition of soft-thresholding to remain non-zero: $|x_i|>τ\norm{x'}/(1+τm)$. |
43 /// condition of soft-thresholding to remain non-zero: $|x\_i|>τ\norm{x'}/(1+τm)$. |
50 /// Clearly, if this condition fails for x_i, it will fail for all the components |
44 /// Clearly, if this condition fails for $x\_i$, it will fail for all the components |
51 /// already exluced. While, if it holds, it will hold for all components not excluded. |
45 /// already exluced. While, if it holds, it will hold for all components not excluded. |
52 #[replace_float_literals(F::cast_from(literal))] |
46 #[replace_float_literals(F::cast_from(literal))] |
53 pub(super) fn l1squared_prox<F :Float + nalgebra::RealField>( |
47 pub(super) fn l1squared_prox<F: Float + nalgebra::RealField>( |
54 sorted_abs : &mut DVector<F>, |
48 sorted_abs: &mut DVector<F>, |
55 x : &mut DVector<F>, |
49 x: &mut DVector<F>, |
56 y : &DVector<F>, |
50 y: &DVector<F>, |
57 β : F |
51 β: F, |
58 ) { |
52 ) { |
59 sorted_abs.copy_from(x); |
53 sorted_abs.copy_from(x); |
60 sorted_abs.axpy(-1.0, y, 1.0); |
54 sorted_abs.axpy(-1.0, y, 1.0); |
61 sorted_abs.apply(|z_i| *z_i = num_traits::abs(*z_i)); |
55 sorted_abs.apply(|z_i| *z_i = num_traits::abs(*z_i)); |
62 sorted_abs.as_mut_slice().sort_unstable_by(|a, b| NaNLeast(*a).cmp(&NaNLeast(*b))); |
56 sorted_abs |
|
57 .as_mut_slice() |
|
58 .sort_unstable_by(|a, b| NaNLeast(*a).cmp(&NaNLeast(*b))); |
63 |
59 |
64 let mut n = sorted_abs.sum(); |
60 let mut n = sorted_abs.sum(); |
65 for (m, az_i) in zip((1..=x.len() as u32).rev(), sorted_abs) { |
61 for (m, az_i) in zip((1..=x.len() as u32).rev(), sorted_abs) { |
66 // test first |
62 // test first |
67 let tmp = β*n/(1.0 + β*F::cast_from(m)); |
63 let tmp = β * n / (1.0 + β * F::cast_from(m)); |
68 if *az_i <= tmp { |
64 if *az_i <= tmp { |
69 // Fail |
65 // Fail |
70 n -= *az_i; |
66 n -= *az_i; |
71 } else { |
67 } else { |
72 // Success |
68 // Success |
73 x.zip_apply(y, |x_i, y_i| *x_i = y_i + soft_thresholding(*x_i-y_i, tmp)); |
69 x.zip_apply(y, |x_i, y_i| { |
74 return |
70 *x_i = y_i + soft_thresholding(*x_i - y_i, tmp) |
|
71 }); |
|
72 return; |
75 } |
73 } |
76 } |
74 } |
77 // m = 0 should always work, but x is zero. |
75 // m = 0 should always work, but x is zero. |
78 x.fill(0.0); |
76 x.fill(0.0); |
79 } |
77 } |
80 |
78 |
81 /// Returns the ∞-norm minimal subdifferential of $x ↦ (β/2)|x-y|_1^2 - g^⊤ x + λ\|x\|₁$ at $x$. |
79 /// Returns the ∞-norm minimal subdifferential of $x ↦ (β/2)|x-y|_1^2 - g^⊤ x + λ\|x\|₁$ at $x$. |
82 /// |
80 /// |
83 /// `v` will be modified and cannot be trusted to contain useful values afterwards. |
81 /// `v` will be modified and cannot be trusted to contain useful values afterwards. |
84 #[replace_float_literals(F::cast_from(literal))] |
82 #[replace_float_literals(F::cast_from(literal))] |
85 fn min_subdifferential<F : Float + nalgebra::RealField>( |
83 fn min_subdifferential<F: Float + nalgebra::RealField>( |
86 y : &DVector<F>, |
84 y: &DVector<F>, |
87 x : &DVector<F>, |
85 x: &DVector<F>, |
88 g : &DVector<F>, |
86 g: &DVector<F>, |
89 λ : F, |
87 λ: F, |
90 β : F |
88 β: F, |
91 ) -> F { |
89 ) -> F { |
92 let mut val = 0.0; |
90 let mut val = 0.0; |
93 let tmp = β*y.dist(x, L1); |
91 let tmp = β * y.dist(x, L1); |
94 for (&g_i, &x_i, y_i) in izip!(g.iter(), x.iter(), y.iter()) { |
92 for (&g_i, &x_i, y_i) in izip!(g.iter(), x.iter(), y.iter()) { |
95 let (mut lb, mut ub) = (-g_i, -g_i); |
93 let (mut lb, mut ub) = (-g_i, -g_i); |
96 match x_i.partial_cmp(y_i) { |
94 match x_i.partial_cmp(y_i) { |
97 Some(Greater) => { lb += tmp; ub += tmp }, |
95 Some(Greater) => { |
98 Some(Less) => { lb -= tmp; ub -= tmp }, |
96 lb += tmp; |
99 Some(Equal) => { lb -= tmp; ub += tmp }, |
97 ub += tmp |
100 None => {}, |
98 } |
|
99 Some(Less) => { |
|
100 lb -= tmp; |
|
101 ub -= tmp |
|
102 } |
|
103 Some(Equal) => { |
|
104 lb -= tmp; |
|
105 ub += tmp |
|
106 } |
|
107 None => {} |
101 } |
108 } |
102 match x_i.partial_cmp(&0.0) { |
109 match x_i.partial_cmp(&0.0) { |
103 Some(Greater) => { lb += λ; ub += λ }, |
110 Some(Greater) => { |
104 Some(Less) => { lb -= λ; ub -= λ }, |
111 lb += λ; |
105 Some(Equal) => { lb -= λ; ub += λ }, |
112 ub += λ |
106 None => {}, |
113 } |
|
114 Some(Less) => { |
|
115 lb -= λ; |
|
116 ub -= λ |
|
117 } |
|
118 Some(Equal) => { |
|
119 lb -= λ; |
|
120 ub += λ |
|
121 } |
|
122 None => {} |
107 }; |
123 }; |
108 val = max_interval_dist_to_zero(val, lb, ub); |
124 val = max_interval_dist_to_zero(val, lb, ub); |
109 } |
125 } |
110 val |
126 val |
111 } |
127 } |
112 |
128 |
113 |
|
114 /// PDPS implementation of [`l1squared_unconstrained`]. |
129 /// PDPS implementation of [`l1squared_unconstrained`]. |
115 /// For detailed documentation of the inputs and outputs, refer to there. |
130 /// For detailed documentation of the inputs and outputs, refer to there. |
116 /// |
131 /// |
117 /// The `λ` component of the model is handled in the proximal step instead of the gradient step |
132 /// The `λ` component of the model is handled in the proximal step instead of the gradient step |
118 /// for potential performance improvements. |
133 /// for potential performance improvements. |
119 #[replace_float_literals(F::cast_from(literal).to_nalgebra_mixed())] |
134 #[replace_float_literals(F::cast_from(literal).to_nalgebra_mixed())] |
120 pub fn l1squared_unconstrained_pdps<F, I>( |
135 pub fn l1squared_unconstrained_pdps<F, I>( |
121 y : &DVector<F::MixedType>, |
136 y: &DVector<F::MixedType>, |
122 g : &DVector<F::MixedType>, |
137 g: &DVector<F::MixedType>, |
123 λ_ : F, |
138 λ_: F, |
124 β_ : F, |
139 β_: F, |
125 x : &mut DVector<F::MixedType>, |
140 x: &mut DVector<F::MixedType>, |
126 τ_ : F, |
141 τ_: F, |
127 σ_ : F, |
142 σ_: F, |
128 iterator : I |
143 iterator: I, |
129 ) -> usize |
144 ) -> usize |
130 where F : Float + ToNalgebraRealField, |
145 where |
131 I : AlgIteratorFactory<F> |
146 F: Float + ToNalgebraRealField, |
|
147 I: AlgIteratorFactory<F>, |
132 { |
148 { |
133 let λ = λ_.to_nalgebra_mixed(); |
149 let λ = λ_.to_nalgebra_mixed(); |
134 let β = β_.to_nalgebra_mixed(); |
150 let β = β_.to_nalgebra_mixed(); |
135 let τ = τ_.to_nalgebra_mixed(); |
151 let τ = τ_.to_nalgebra_mixed(); |
136 let σ = σ_.to_nalgebra_mixed(); |
152 let σ = σ_.to_nalgebra_mixed(); |
178 /// - \left(x ↦ \frac{β}{2θ} |x-y|_1^2 \right)^*(w). |
192 /// - \left(x ↦ \frac{β}{2θ} |x-y|_1^2 \right)^*(w). |
179 /// \end{split} |
193 /// \end{split} |
180 /// $$</div> |
194 /// $$</div> |
181 #[replace_float_literals(F::cast_from(literal).to_nalgebra_mixed())] |
195 #[replace_float_literals(F::cast_from(literal).to_nalgebra_mixed())] |
182 pub fn l1squared_unconstrained_pdps_alt<F, I>( |
196 pub fn l1squared_unconstrained_pdps_alt<F, I>( |
183 y : &DVector<F::MixedType>, |
197 y: &DVector<F::MixedType>, |
184 g : &DVector<F::MixedType>, |
198 g: &DVector<F::MixedType>, |
185 λ_ : F, |
199 λ_: F, |
186 β_ : F, |
200 β_: F, |
187 x : &mut DVector<F::MixedType>, |
201 x: &mut DVector<F::MixedType>, |
188 τ_ : F, |
202 τ_: F, |
189 σ_ : F, |
203 σ_: F, |
190 θ_ : F, |
204 θ_: F, |
191 iterator : I |
205 iterator: I, |
192 ) -> usize |
206 ) -> usize |
193 where F : Float + ToNalgebraRealField, |
207 where |
194 I : AlgIteratorFactory<F> |
208 F: Float + ToNalgebraRealField, |
|
209 I: AlgIteratorFactory<F>, |
195 { |
210 { |
196 let λ = λ_.to_nalgebra_mixed(); |
211 let λ = λ_.to_nalgebra_mixed(); |
197 let τ = τ_.to_nalgebra_mixed(); |
212 let τ = τ_.to_nalgebra_mixed(); |
198 let σ = σ_.to_nalgebra_mixed(); |
213 let σ = σ_.to_nalgebra_mixed(); |
199 let θ = θ_.to_nalgebra_mixed(); |
214 let θ = θ_.to_nalgebra_mixed(); |
200 let β = β_.to_nalgebra_mixed(); |
215 let β = β_.to_nalgebra_mixed(); |
201 let σθ = σ*θ; |
216 let σθ = σ * θ; |
202 let τθ = τ*θ; |
217 let τθ = τ * θ; |
203 let mut w = DVector::zeros(x.len()); |
218 let mut w = DVector::zeros(x.len()); |
204 let mut tmp = DVector::zeros(x.len()); |
219 let mut tmp = DVector::zeros(x.len()); |
205 let mut xprev = x.clone(); |
220 let mut xprev = x.clone(); |
206 let mut iters = 0; |
221 let mut iters = 0; |
207 |
222 |
208 iterator.iterate(|state| { |
223 iterator.iterate(|state| { |
209 // Primal step: x^{k+1} = soft_τλ(x^k - τ(θ w^k -g)) |
224 // Primal step: x^{k+1} = soft_τλ(x^k - τ(θ w^k -g)) |
210 x.axpy(-τθ, &w, 1.0); |
225 x.axpy(-τθ, &w, 1.0); |
211 x.axpy(τ, g, 1.0); |
226 x.axpy(τ, g, 1.0); |
212 x.apply(|x_i| *x_i = soft_thresholding(*x_i, τ*λ)); |
227 x.apply(|x_i| *x_i = soft_thresholding(*x_i, τ * λ)); |
213 |
228 |
214 // Dual step: with g(x) = (β/(2θ))‖x-y‖₁² and q = w^k + σ(2x^{k+1}-x^k), |
229 // Dual step: with g(x) = (β/(2θ))‖x-y‖₁² and q = w^k + σ(2x^{k+1}-x^k), |
215 // we compute w^{k+1} = prox_{σg^*}(q) for |
230 // we compute w^{k+1} = prox_{σg^*}(q) for |
216 // = q - σ prox_{g/σ}(q/σ) |
231 // = q - σ prox_{g/σ}(q/σ) |
217 // = q - σ prox_{(β/(2θσ))‖.-y‖₁²}(q/σ) |
232 // = q - σ prox_{(β/(2θσ))‖.-y‖₁²}(q/σ) |
218 // = σ(q/σ - prox_{(β/(2θσ))‖.-y‖₁²}(q/σ)) |
233 // = σ(q/σ - prox_{(β/(2θσ))‖.-y‖₁²}(q/σ)) |
219 // where q/σ = w^k/σ + (2x^{k+1}-x^k), |
234 // where q/σ = w^k/σ + (2x^{k+1}-x^k), |
220 w /= σ; |
235 w /= σ; |
221 w.axpy(2.0, x, 1.0); |
236 w.axpy(2.0, x, 1.0); |
222 w.axpy(-1.0, &xprev, 1.0); |
237 w.axpy(-1.0, &xprev, 1.0); |
223 xprev.copy_from(&w); // use xprev as temporary variable |
238 xprev.copy_from(&w); // use xprev as temporary variable |
224 l1squared_prox(&mut tmp, &mut xprev, y, β/σθ); |
239 l1squared_prox(&mut tmp, &mut xprev, y, β / σθ); |
225 w -= &xprev; |
240 w -= &xprev; |
226 w *= σ; |
241 w *= σ; |
227 xprev.copy_from(x); |
242 xprev.copy_from(x); |
228 |
243 |
229 iters += 1; |
244 iters += 1; |
230 |
245 |
231 state.if_verbose(|| { |
246 state.if_verbose(|| F::from_nalgebra_mixed(min_subdifferential(y, x, g, λ, β))) |
232 F::from_nalgebra_mixed(min_subdifferential(y, x, g, λ, β)) |
|
233 }) |
|
234 }); |
247 }); |
235 |
248 |
236 iters |
249 iters |
237 } |
250 } |
238 |
|
239 |
251 |
240 /// This function applies an iterative method for the solution of the problem |
252 /// This function applies an iterative method for the solution of the problem |
241 /// <div>$$ |
253 /// <div>$$ |
242 /// \min_{x ∈ ℝ^n} \frac{β}{2} |x-y|_1^2 - g^⊤ x + λ\|x\|₁. |
254 /// \min_{x ∈ ℝ^n} \frac{β}{2} |x-y|_1^2 - g^⊤ x + λ\|x\|₁. |
243 /// $$</div> |
255 /// $$</div> |
244 /// Only PDPS is supported. |
256 /// Only PDPS is supported. |
245 /// |
257 /// |
246 /// This function returns the number of iterations taken. |
258 /// This function returns the number of iterations taken. |
247 #[replace_float_literals(F::cast_from(literal))] |
259 #[replace_float_literals(F::cast_from(literal))] |
248 pub fn l1squared_unconstrained<F, I>( |
260 pub fn l1squared_unconstrained<F, I>( |
249 y : &DVector<F::MixedType>, |
261 y: &DVector<F::MixedType>, |
250 g : &DVector<F::MixedType>, |
262 g: &DVector<F::MixedType>, |
251 λ : F, |
263 λ: F, |
252 β : F, |
264 β: F, |
253 x : &mut DVector<F::MixedType>, |
265 x: &mut DVector<F::MixedType>, |
254 inner : &InnerSettings<F>, |
266 inner: &InnerSettings<F>, |
255 iterator : I |
267 iterator: I, |
256 ) -> usize |
268 ) -> usize |
257 where F : Float + ToNalgebraRealField, |
269 where |
258 I : AlgIteratorFactory<F> |
270 F: Float + ToNalgebraRealField, |
|
271 I: AlgIteratorFactory<F>, |
259 { |
272 { |
260 // Estimate of ‖K‖ for K=θ Id. |
273 // Estimate of ‖K‖ for K=θ Id. |
261 let inner_θ = 1.0; |
274 let inner_θ = 1.0; |
262 let normest = inner_θ; |
275 let normest = inner_θ; |
263 |
276 |
264 let (inner_τ, inner_σ) = (inner.pdps_τσ0.0 / normest, inner.pdps_τσ0.1 / normest); |
277 let (inner_τ, inner_σ) = (inner.pdps_τσ0.0 / normest, inner.pdps_τσ0.1 / normest); |
265 |
278 |
266 match inner.method { |
279 match inner.method { |
267 InnerMethod::PDPS => |
280 InnerMethod::PDPS => { |
268 l1squared_unconstrained_pdps_alt(y, g, λ, β, x, inner_τ, inner_σ, inner_θ, iterator), |
281 l1squared_unconstrained_pdps_alt(y, g, λ, β, x, inner_τ, inner_σ, inner_θ, iterator) |
|
282 } |
269 other => unimplemented!("${other:?} is unimplemented"), |
283 other => unimplemented!("${other:?} is unimplemented"), |
270 } |
284 } |
271 } |
285 } |