| |
1 /*! |
| |
2 Solver for the point source localisation problem using a |
| |
3 primal-dual proximal splitting with a forward step. |
| |
4 */ |
| |
5 |
| |
6 use numeric_literals::replace_float_literals; |
| |
7 use serde::{Serialize, Deserialize}; |
| |
8 |
| |
9 use alg_tools::iterate::AlgIteratorFactory; |
| |
10 use alg_tools::euclidean::Euclidean; |
| |
11 use alg_tools::sets::Cube; |
| |
12 use alg_tools::loc::Loc; |
| |
13 use alg_tools::mapping::{Mapping, Instance}; |
| |
14 use alg_tools::norms::Norm; |
| |
15 use alg_tools::direct_product::Pair; |
| |
16 use alg_tools::bisection_tree::{ |
| |
17 BTFN, |
| |
18 PreBTFN, |
| |
19 Bounds, |
| |
20 BTNodeLookup, |
| |
21 BTNode, |
| |
22 BTSearch, |
| |
23 P2Minimise, |
| |
24 SupportGenerator, |
| |
25 LocalAnalysis, |
| |
26 //Bounded, |
| |
27 }; |
| |
28 use alg_tools::mapping::RealMapping; |
| |
29 use alg_tools::nalgebra_support::ToNalgebraRealField; |
| |
30 use alg_tools::linops::{ |
| |
31 BoundedLinear, AXPY, GEMV, Adjointable, IdOp, |
| |
32 }; |
| |
33 use alg_tools::convex::{Conjugable, Prox}; |
| |
34 use alg_tools::norms::{L2, Linfinity, PairNorm}; |
| |
35 |
| |
36 use crate::types::*; |
| |
37 use crate::measures::{DiscreteMeasure, Radon, RNDM}; |
| |
38 use crate::measures::merging::SpikeMerging; |
| |
39 use crate::forward_model::{ |
| |
40 ForwardModel, |
| |
41 AdjointProductPairBoundedBy, |
| |
42 }; |
| |
43 use crate::seminorms::DiscreteMeasureOp; |
| |
44 use crate::plot::{ |
| |
45 SeqPlotter, |
| |
46 Plotting, |
| |
47 PlotLookup |
| |
48 }; |
| |
49 use crate::fb::*; |
| |
50 use crate::regularisation::RegTerm; |
| |
51 use crate::dataterm::calculate_residual; |
| |
52 |
| |
53 /// Settings for [`pointsource_forward_pdps_pair`]. |
| |
54 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
| |
55 #[serde(default)] |
| |
56 pub struct ForwardPDPSConfig<F : Float> { |
| |
57 /// Primal step length scaling. |
| |
58 pub τ0 : F, |
| |
59 /// Primal step length scaling. |
| |
60 pub σp0 : F, |
| |
61 /// Dual step length scaling. |
| |
62 pub σd0 : F, |
| |
63 /// Generic parameters |
| |
64 pub insertion : FBGenericConfig<F>, |
| |
65 } |
| |
66 |
| |
67 #[replace_float_literals(F::cast_from(literal))] |
| |
68 impl<F : Float> Default for ForwardPDPSConfig<F> { |
| |
69 fn default() -> Self { |
| |
70 let τ0 = 0.99; |
| |
71 ForwardPDPSConfig { |
| |
72 τ0, |
| |
73 σd0 : 0.1, |
| |
74 σp0 : 0.99, |
| |
75 insertion : Default::default() |
| |
76 } |
| |
77 } |
| |
78 } |
| |
79 |
| |
80 type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>; |
| |
81 |
| |
82 /// Iteratively solve the pointsource localisation with an additional variable |
| |
83 /// using primal-dual proximal splitting with a forward step. |
| |
84 #[replace_float_literals(F::cast_from(literal))] |
| |
85 pub fn pointsource_forward_pdps_pair< |
| |
86 'a, F, I, A, GA, 𝒟, BTA, BT𝒟, G𝒟, S, K, Reg, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize |
| |
87 >( |
| |
88 opA : &'a A, |
| |
89 b : &A::Observable, |
| |
90 reg : Reg, |
| |
91 op𝒟 : &'a 𝒟, |
| |
92 config : &ForwardPDPSConfig<F>, |
| |
93 iterator : I, |
| |
94 mut plotter : SeqPlotter<F, N>, |
| |
95 //opKμ : KOpM, |
| |
96 opKz : &KOpZ, |
| |
97 fnR : &R, |
| |
98 fnH : &H, |
| |
99 mut z : Z, |
| |
100 mut y : Y, |
| |
101 ) -> MeasureZ<F, Z, N> |
| |
102 where |
| |
103 F : Float + ToNalgebraRealField, |
| |
104 I : AlgIteratorFactory<IterInfo<F, N>>, |
| |
105 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, |
| |
106 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| |
107 A : ForwardModel< |
| |
108 MeasureZ<F, Z, N>, |
| |
109 F, |
| |
110 PairNorm<Radon, L2, L2>, |
| |
111 PreadjointCodomain = Pair<BTFN<F, GA, BTA, N>, Z>, |
| |
112 > |
| |
113 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, 𝒟, IdOp<Z>, FloatType=F>, |
| |
114 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| |
115 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
| |
116 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>, |
| |
117 Codomain = BTFN<F, G𝒟, BT𝒟, N>>, |
| |
118 BT𝒟 : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| |
119 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
120 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
121 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
| |
122 Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
| |
123 PlotLookup : Plotting<N>, |
| |
124 RNDM<F, N> : SpikeMerging<F>, |
| |
125 Reg : RegTerm<F, N>, |
| |
126 KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y> |
| |
127 + GEMV<F, Z> |
| |
128 + Adjointable<Z, Y, AdjointCodomain = Z>, |
| |
129 for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, |
| |
130 Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, |
| |
131 for<'b> &'b Y : Instance<Y>, |
| |
132 Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>, |
| |
133 for<'b> &'b Z : Instance<Z>, |
| |
134 R : Prox<Z, Codomain=F>, |
| |
135 H : Conjugable<Y, F, Codomain=F>, |
| |
136 for<'b> H::Conjugate<'b> : Prox<Y>, |
| |
137 { |
| |
138 |
| |
139 // Check parameters |
| |
140 assert!(config.τ0 > 0.0 && |
| |
141 config.τ0 < 1.0 && |
| |
142 config.σp0 > 0.0 && |
| |
143 config.σp0 < 1.0 && |
| |
144 config.σd0 > 0.0 && |
| |
145 config.σp0 * config.σd0 <= 1.0, |
| |
146 "Invalid step length parameters"); |
| |
147 |
| |
148 // Initialise iterates |
| |
149 let mut μ = DiscreteMeasure::new(); |
| |
150 let mut residual = calculate_residual(Pair(&μ, &z), opA, b); |
| |
151 |
| |
152 // Set up parameters |
| |
153 let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); |
| |
154 let bigM = 0.0; //opKμ.adjoint_product_bound(&op𝒟).unwrap().sqrt(); |
| |
155 let nKz = opKz.opnorm_bound(L2, L2); |
| |
156 let opIdZ = IdOp::new(); |
| |
157 let (l, l_z) = opA.adjoint_product_pair_bound(&op𝒟, &opIdZ).unwrap(); |
| |
158 // We need to satisfy |
| |
159 // |
| |
160 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 |
| |
161 // ^^^^^^^^^^^^^^^^^^^^^^^^^ |
| |
162 // with 1 > σ_p L_z and 1 > τ L. |
| |
163 // |
| |
164 // To do so, we first solve σ_p and σ_d from standard PDPS step length condition |
| |
165 // ^^^^^ < 1. then we solve τ from the rest. |
| |
166 let σ_d = config.σd0 / nKz; |
| |
167 let σ_p = config.σp0 / (l_z + config.σd0 * nKz); |
| |
168 // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0} |
| |
169 // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L) |
| |
170 // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0}) |
| |
171 let φ = 1.0 - config.σp0; |
| |
172 let a = 1.0 - σ_p * l_z; |
| |
173 let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l ); |
| |
174 // Acceleration is not currently supported |
| |
175 // let γ = dataterm.factor_of_strong_convexity(); |
| |
176 let ω = 1.0; |
| |
177 |
| |
178 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
| |
179 // by τ compared to the conditional gradient approach. |
| |
180 let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling(); |
| |
181 let mut ε = tolerance.initial(); |
| |
182 |
| |
183 let starH = fnH.conjugate(); |
| |
184 |
| |
185 // Statistics |
| |
186 let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo { |
| |
187 value : residual.norm2_squared_div2() + fnR.apply(z) |
| |
188 + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)), |
| |
189 n_spikes : μ.len(), |
| |
190 ε, |
| |
191 // postprocessing: config.insertion.postprocessing.then(|| μ.clone()), |
| |
192 .. stats |
| |
193 }; |
| |
194 let mut stats = IterInfo::new(); |
| |
195 |
| |
196 // Run the algorithm |
| |
197 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { |
| |
198 // Calculate initial transport |
| |
199 let Pair(τv, τz) = opA.preadjoint().apply(residual * τ); |
| |
200 let z_base = z.clone(); |
| |
201 let μ_base = μ.clone(); |
| |
202 |
| |
203 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. |
| |
204 let (d, _within_tolerances) = insert_and_reweigh( |
| |
205 &mut μ, &τv, &μ_base, None, |
| |
206 op𝒟, op𝒟norm, |
| |
207 τ, ε, &config.insertion, |
| |
208 ®, &state, &mut stats, |
| |
209 ); |
| |
210 |
| |
211 // // Merge spikes. |
| |
212 // // This expects the prune below to prune γ. |
| |
213 // // TODO: This may not work correctly in all cases. |
| |
214 // let ins = &config.insertion; |
| |
215 // if ins.merge_now(&state) { |
| |
216 // if let SpikeMergingMethod::None = ins.merging { |
| |
217 // } else { |
| |
218 // stats.merged += μ.merge_spikes(ins.merging, |μ_candidate| { |
| |
219 // let ν = μ_candidate.sub_matching(&γ1)-&μ_base_minus_γ0; |
| |
220 // let mut d = &τv̆ + op𝒟.preapply(ν); |
| |
221 // reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, ins) |
| |
222 // }); |
| |
223 // } |
| |
224 // } |
| |
225 |
| |
226 // Prune spikes with zero weight. |
| |
227 stats.pruned += prune_with_stats(&mut μ); |
| |
228 |
| |
229 // Do z variable primal update |
| |
230 z.axpy(-σ_p/τ, τz, 1.0); // TODO: simplify nasty factors |
| |
231 opKz.adjoint().gemv(&mut z, -σ_p, &y, 1.0); |
| |
232 z = fnR.prox(σ_p, z); |
| |
233 // Do dual update |
| |
234 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] |
| |
235 opKz.gemv(&mut y, σ_d*(1.0 + ω), &z, 1.0); |
| |
236 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
| |
237 opKz.gemv(&mut y, -σ_d*ω, z_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
| |
238 y = starH.prox(σ_d, y); |
| |
239 |
| |
240 // Update residual |
| |
241 residual = calculate_residual(Pair(&μ, &z), opA, b); |
| |
242 |
| |
243 // Update step length parameters |
| |
244 // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ); |
| |
245 |
| |
246 // Give statistics if requested |
| |
247 let iter = state.iteration(); |
| |
248 stats.this_iters += 1; |
| |
249 |
| |
250 state.if_verbose(|| { |
| |
251 plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ); |
| |
252 full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) |
| |
253 }); |
| |
254 |
| |
255 // Update main tolerance for next iteration |
| |
256 ε = tolerance.update(ε, iter); |
| |
257 } |
| |
258 |
| |
259 let fit = |μ̃ : &RNDM<F, N>| { |
| |
260 (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2() |
| |
261 //+ fnR.apply(z) + reg.apply(μ) |
| |
262 + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z)) |
| |
263 }; |
| |
264 |
| |
265 μ.merge_spikes_fitness(config.insertion.merging, fit, |&v| v); |
| |
266 μ.prune(); |
| |
267 Pair(μ, z) |
| |
268 } |