src/forward_pdps.rs

branch
dev
changeset 35
b087e3eab191
child 37
c5d8bd1a7728
equal deleted inserted replaced
34:efa60bc4f743 35:b087e3eab191
1 /*!
2 Solver for the point source localisation problem using a
3 primal-dual proximal splitting with a forward step.
4 */
5
6 use numeric_literals::replace_float_literals;
7 use serde::{Serialize, Deserialize};
8
9 use alg_tools::iterate::AlgIteratorFactory;
10 use alg_tools::euclidean::Euclidean;
11 use alg_tools::sets::Cube;
12 use alg_tools::loc::Loc;
13 use alg_tools::mapping::{Mapping, Instance};
14 use alg_tools::norms::Norm;
15 use alg_tools::direct_product::Pair;
16 use alg_tools::bisection_tree::{
17 BTFN,
18 PreBTFN,
19 Bounds,
20 BTNodeLookup,
21 BTNode,
22 BTSearch,
23 P2Minimise,
24 SupportGenerator,
25 LocalAnalysis,
26 //Bounded,
27 };
28 use alg_tools::mapping::RealMapping;
29 use alg_tools::nalgebra_support::ToNalgebraRealField;
30 use alg_tools::linops::{
31 BoundedLinear, AXPY, GEMV, Adjointable, IdOp,
32 };
33 use alg_tools::convex::{Conjugable, Prox};
34 use alg_tools::norms::{L2, Linfinity, PairNorm};
35
36 use crate::types::*;
37 use crate::measures::{DiscreteMeasure, Radon, RNDM};
38 use crate::measures::merging::SpikeMerging;
39 use crate::forward_model::{
40 ForwardModel,
41 AdjointProductPairBoundedBy,
42 };
43 use crate::seminorms::DiscreteMeasureOp;
44 use crate::plot::{
45 SeqPlotter,
46 Plotting,
47 PlotLookup
48 };
49 use crate::fb::*;
50 use crate::regularisation::RegTerm;
51 use crate::dataterm::calculate_residual;
52
53 /// Settings for [`pointsource_forward_pdps_pair`].
54 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
55 #[serde(default)]
56 pub struct ForwardPDPSConfig<F : Float> {
57 /// Primal step length scaling.
58 pub τ0 : F,
59 /// Primal step length scaling.
60 pub σp0 : F,
61 /// Dual step length scaling.
62 pub σd0 : F,
63 /// Generic parameters
64 pub insertion : FBGenericConfig<F>,
65 }
66
67 #[replace_float_literals(F::cast_from(literal))]
68 impl<F : Float> Default for ForwardPDPSConfig<F> {
69 fn default() -> Self {
70 let τ0 = 0.99;
71 ForwardPDPSConfig {
72 τ0,
73 σd0 : 0.1,
74 σp0 : 0.99,
75 insertion : Default::default()
76 }
77 }
78 }
79
80 type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>;
81
82 /// Iteratively solve the pointsource localisation with an additional variable
83 /// using primal-dual proximal splitting with a forward step.
84 #[replace_float_literals(F::cast_from(literal))]
85 pub fn pointsource_forward_pdps_pair<
86 'a, F, I, A, GA, 𝒟, BTA, BT𝒟, G𝒟, S, K, Reg, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize
87 >(
88 opA : &'a A,
89 b : &A::Observable,
90 reg : Reg,
91 op𝒟 : &'a 𝒟,
92 config : &ForwardPDPSConfig<F>,
93 iterator : I,
94 mut plotter : SeqPlotter<F, N>,
95 //opKμ : KOpM,
96 opKz : &KOpZ,
97 fnR : &R,
98 fnH : &H,
99 mut z : Z,
100 mut y : Y,
101 ) -> MeasureZ<F, Z, N>
102 where
103 F : Float + ToNalgebraRealField,
104 I : AlgIteratorFactory<IterInfo<F, N>>,
105 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>,
106 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
107 A : ForwardModel<
108 MeasureZ<F, Z, N>,
109 F,
110 PairNorm<Radon, L2, L2>,
111 PreadjointCodomain = Pair<BTFN<F, GA, BTA, N>, Z>,
112 >
113 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, 𝒟, IdOp<Z>, FloatType=F>,
114 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
115 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone,
116 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>,
117 Codomain = BTFN<F, G𝒟, BT𝒟, N>>,
118 BT𝒟 : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
119 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
120 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
121 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
122 Cube<F, N>: P2Minimise<Loc<F, N>, F>,
123 PlotLookup : Plotting<N>,
124 RNDM<F, N> : SpikeMerging<F>,
125 Reg : RegTerm<F, N>,
126 KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y>
127 + GEMV<F, Z>
128 + Adjointable<Z, Y, AdjointCodomain = Z>,
129 for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>,
130 Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd,
131 for<'b> &'b Y : Instance<Y>,
132 Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>,
133 for<'b> &'b Z : Instance<Z>,
134 R : Prox<Z, Codomain=F>,
135 H : Conjugable<Y, F, Codomain=F>,
136 for<'b> H::Conjugate<'b> : Prox<Y>,
137 {
138
139 // Check parameters
140 assert!(config.τ0 > 0.0 &&
141 config.τ0 < 1.0 &&
142 config.σp0 > 0.0 &&
143 config.σp0 < 1.0 &&
144 config.σd0 > 0.0 &&
145 config.σp0 * config.σd0 <= 1.0,
146 "Invalid step length parameters");
147
148 // Initialise iterates
149 let mut μ = DiscreteMeasure::new();
150 let mut residual = calculate_residual(Pair(&μ, &z), opA, b);
151
152 // Set up parameters
153 let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity);
154 let bigM = 0.0; //opKμ.adjoint_product_bound(&op𝒟).unwrap().sqrt();
155 let nKz = opKz.opnorm_bound(L2, L2);
156 let opIdZ = IdOp::new();
157 let (l, l_z) = opA.adjoint_product_pair_bound(&op𝒟, &opIdZ).unwrap();
158 // We need to satisfy
159 //
160 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1
161 // ^^^^^^^^^^^^^^^^^^^^^^^^^
162 // with 1 > σ_p L_z and 1 > τ L.
163 //
164 // To do so, we first solve σ_p and σ_d from standard PDPS step length condition
165 // ^^^^^ < 1. then we solve τ from the rest.
166 let σ_d = config.σd0 / nKz;
167 let σ_p = config.σp0 / (l_z + config.σd0 * nKz);
168 // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0}
169 // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L)
170 // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0})
171 let φ = 1.0 - config.σp0;
172 let a = 1.0 - σ_p * l_z;
173 let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l );
174 // Acceleration is not currently supported
175 // let γ = dataterm.factor_of_strong_convexity();
176 let ω = 1.0;
177
178 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
179 // by τ compared to the conditional gradient approach.
180 let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling();
181 let mut ε = tolerance.initial();
182
183 let starH = fnH.conjugate();
184
185 // Statistics
186 let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo {
187 value : residual.norm2_squared_div2() + fnR.apply(z)
188 + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)),
189 n_spikes : μ.len(),
190 ε,
191 // postprocessing: config.insertion.postprocessing.then(|| μ.clone()),
192 .. stats
193 };
194 let mut stats = IterInfo::new();
195
196 // Run the algorithm
197 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) {
198 // Calculate initial transport
199 let Pair(τv, τz) = opA.preadjoint().apply(residual * τ);
200 let z_base = z.clone();
201 let μ_base = μ.clone();
202
203 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes.
204 let (d, _within_tolerances) = insert_and_reweigh(
205 &mut μ, &τv, &μ_base, None,
206 op𝒟, op𝒟norm,
207 τ, ε, &config.insertion,
208 &reg, &state, &mut stats,
209 );
210
211 // // Merge spikes.
212 // // This expects the prune below to prune γ.
213 // // TODO: This may not work correctly in all cases.
214 // let ins = &config.insertion;
215 // if ins.merge_now(&state) {
216 // if let SpikeMergingMethod::None = ins.merging {
217 // } else {
218 // stats.merged += μ.merge_spikes(ins.merging, |μ_candidate| {
219 // let ν = μ_candidate.sub_matching(&γ1)-&μ_base_minus_γ0;
220 // let mut d = &τv̆ + op𝒟.preapply(ν);
221 // reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, ins)
222 // });
223 // }
224 // }
225
226 // Prune spikes with zero weight.
227 stats.pruned += prune_with_stats(&mut μ);
228
229 // Do z variable primal update
230 z.axpy(-σ_p/τ, τz, 1.0); // TODO: simplify nasty factors
231 opKz.adjoint().gemv(&mut z, -σ_p, &y, 1.0);
232 z = fnR.prox(σ_p, z);
233 // Do dual update
234 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}]
235 opKz.gemv(&mut y, σ_d*(1.0 + ω), &z, 1.0);
236 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
237 opKz.gemv(&mut y, -σ_d*ω, z_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b
238 y = starH.prox(σ_d, y);
239
240 // Update residual
241 residual = calculate_residual(Pair(&μ, &z), opA, b);
242
243 // Update step length parameters
244 // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ);
245
246 // Give statistics if requested
247 let iter = state.iteration();
248 stats.this_iters += 1;
249
250 state.if_verbose(|| {
251 plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ);
252 full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new()))
253 });
254
255 // Update main tolerance for next iteration
256 ε = tolerance.update(ε, iter);
257 }
258
259 let fit = |μ̃ : &RNDM<F, N>| {
260 (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2()
261 //+ fnR.apply(z) + reg.apply(μ)
262 + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z))
263 };
264
265 μ.merge_spikes_fitness(config.insertion.merging, fit, |&v| v);
266 μ.prune();
267 Pair(μ, z)
268 }

mercurial