| 238 postprocessing : false, |
222 postprocessing : false, |
| 239 } |
223 } |
| 240 } |
224 } |
| 241 } |
225 } |
| 242 |
226 |
| 243 /// Trait for specialisation of [`generic_pointsource_fb_reg`] to basic FB, FISTA. |
227 #[replace_float_literals(F::cast_from(literal))] |
| |
228 pub(crate) fn μ_diff<F : Float, const N : usize>( |
| |
229 μ_new : &DiscreteMeasure<Loc<F, N>, F>, |
| |
230 μ_base : &DiscreteMeasure<Loc<F, N>, F>, |
| |
231 ν_delta : Option<&DiscreteMeasure<Loc<F, N>, F>>, |
| |
232 config : &FBGenericConfig<F> |
| |
233 ) -> DiscreteMeasure<Loc<F, N>, F> { |
| |
234 let mut ν : DiscreteMeasure<Loc<F, N>, F> = match config.insertion_style { |
| |
235 InsertionStyle::Reuse => { |
| |
236 μ_new.iter_spikes() |
| |
237 .zip(μ_base.iter_masses().chain(std::iter::repeat(0.0))) |
| |
238 .map(|(δ, α_base)| (δ.x, α_base - δ.α)) |
| |
239 .collect() |
| |
240 }, |
| |
241 InsertionStyle::Zero => { |
| |
242 μ_new.iter_spikes() |
| |
243 .map(|δ| -δ) |
| |
244 .chain(μ_base.iter_spikes().copied()) |
| |
245 .collect() |
| |
246 } |
| |
247 }; |
| |
248 ν.prune(); // Potential small performance improvement |
| |
249 // Add ν_delta if given |
| |
250 match ν_delta { |
| |
251 None => ν, |
| |
252 Some(ν_d) => ν + ν_d, |
| |
253 } |
| |
254 } |
| |
255 |
| |
256 #[replace_float_literals(F::cast_from(literal))] |
| |
257 pub(crate) fn insert_and_reweigh< |
| |
258 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, State, const N : usize |
| |
259 >( |
| |
260 μ : &mut DiscreteMeasure<Loc<F, N>, F>, |
| |
261 minus_τv : &BTFN<F, GA, BTA, N>, |
| |
262 μ_base : &DiscreteMeasure<Loc<F, N>, F>, |
| |
263 ν_delta: Option<&DiscreteMeasure<Loc<F, N>, F>>, |
| |
264 op𝒟 : &'a 𝒟, |
| |
265 op𝒟norm : F, |
| |
266 τ : F, |
| |
267 ε : F, |
| |
268 config : &FBGenericConfig<F>, |
| |
269 reg : &Reg, |
| |
270 state : &State, |
| |
271 stats : &mut IterInfo<F, N>, |
| |
272 ) -> (BTFN<F, BothGenerators<GA, G𝒟>, BTA, N>, bool) |
| |
273 where F : Float + ToNalgebraRealField, |
| |
274 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| |
275 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| |
276 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
| |
277 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
| |
278 𝒟::Codomain : RealMapping<F, N>, |
| |
279 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
280 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
281 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
| |
282 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
| |
283 Reg : RegTerm<F, N>, |
| |
284 State : AlgIteratorState { |
| |
285 |
| |
286 // Maximum insertion count and measure difference calculation depend on insertion style. |
| |
287 let (m, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { |
| |
288 (i, Some((l, k))) if i <= l => (k, false), |
| |
289 _ => (config.max_insertions, !state.is_quiet()), |
| |
290 }; |
| |
291 let max_insertions = match config.insertion_style { |
| |
292 InsertionStyle::Zero => { |
| |
293 todo!("InsertionStyle::Zero does not currently work with FISTA, so diabled."); |
| |
294 // let n = μ.len(); |
| |
295 // μ = DiscreteMeasure::new(); |
| |
296 // n + m |
| |
297 }, |
| |
298 InsertionStyle::Reuse => m, |
| |
299 }; |
| |
300 |
| |
301 // TODO: should avoid a second copy of μ here; μ_base already stores a copy. |
| |
302 let ω0 = op𝒟.apply(match ν_delta { |
| |
303 None => μ.clone(), |
| |
304 Some(ν_d) => &*μ + ν_d, |
| |
305 }); |
| |
306 |
| |
307 // Add points to support until within error tolerance or maximum insertion count reached. |
| |
308 let mut count = 0; |
| |
309 let (within_tolerances, d) = 'insertion: loop { |
| |
310 if μ.len() > 0 { |
| |
311 // Form finite-dimensional subproblem. The subproblem references to the original μ^k |
| |
312 // from the beginning of the iteration are all contained in the immutable c and g. |
| |
313 let à = op𝒟.findim_matrix(μ.iter_locations()); |
| |
314 let g̃ = DVector::from_iterator(μ.len(), |
| |
315 μ.iter_locations() |
| |
316 .map(|ζ| minus_τv.apply(ζ) + ω0.apply(ζ)) |
| |
317 .map(F::to_nalgebra_mixed)); |
| |
318 let mut x = μ.masses_dvector(); |
| |
319 |
| |
320 // The gradient of the forward component of the inner objective is C^*𝒟Cx - g̃. |
| |
321 // We have |C^*𝒟Cx|_2 = sup_{|z|_2 ≤ 1} ⟨z, C^*𝒟Cx⟩ = sup_{|z|_2 ≤ 1} ⟨Cz|𝒟Cx⟩ |
| |
322 // ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟Cx|_∞ ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟| |Cx|_ℳ |
| |
323 // ≤ sup_{|z|_2 ≤ 1} |z|_1 |𝒟| |x|_1 ≤ sup_{|z|_2 ≤ 1} n |z|_2 |𝒟| |x|_2 |
| |
324 // = n |𝒟| |x|_2, where n is the number of points. Therefore |
| |
325 let Ã_normest = op𝒟norm * F::cast_from(μ.len()); |
| |
326 |
| |
327 // Solve finite-dimensional subproblem. |
| |
328 stats.inner_iters += reg.solve_findim(&Ã, &g̃, τ, &mut x, Ã_normest, ε, config); |
| |
329 |
| |
330 // Update masses of μ based on solution of finite-dimensional subproblem. |
| |
331 μ.set_masses_dvector(&x); |
| |
332 } |
| |
333 |
| |
334 // Form d = ω0 - τv - 𝒟μ = -𝒟(μ - μ^k) - τv for checking the proximate optimality |
| |
335 // conditions in the predual space, and finding new points for insertion, if necessary. |
| |
336 let mut d = minus_τv + op𝒟.preapply(μ_diff(μ, μ_base, ν_delta, config)); |
| |
337 |
| |
338 // If no merging heuristic is used, let's be more conservative about spike insertion, |
| |
339 // and skip it after first round. If merging is done, being more greedy about spike |
| |
340 // insertion also seems to improve performance. |
| |
341 let skip_by_rough_check = if let SpikeMergingMethod::None = config.merging { |
| |
342 false |
| |
343 } else { |
| |
344 count > 0 |
| |
345 }; |
| |
346 |
| |
347 // Find a spike to insert, if needed |
| |
348 let (ξ, _v_ξ, in_bounds) = match reg.find_tolerance_violation( |
| |
349 &mut d, τ, ε, skip_by_rough_check, config |
| |
350 ) { |
| |
351 None => break 'insertion (true, d), |
| |
352 Some(res) => res, |
| |
353 }; |
| |
354 |
| |
355 // Break if maximum insertion count reached |
| |
356 if count >= max_insertions { |
| |
357 break 'insertion (in_bounds, d) |
| |
358 } |
| |
359 |
| |
360 // No point in optimising the weight here; the finite-dimensional algorithm is fast. |
| |
361 *μ += DeltaMeasure { x : ξ, α : 0.0 }; |
| |
362 count += 1; |
| |
363 }; |
| |
364 |
| |
365 // TODO: should redo everything if some transports cause a problem. |
| |
366 // Maybe implementation should call above loop as a closure. |
| |
367 |
| |
368 if !within_tolerances && warn_insertions { |
| |
369 // Complain (but continue) if we failed to get within tolerances |
| |
370 // by inserting more points. |
| |
371 let err = format!("Maximum insertions reached without achieving \ |
| |
372 subproblem solution tolerance"); |
| |
373 println!("{}", err.red()); |
| |
374 } |
| |
375 |
| |
376 (d, within_tolerances) |
| |
377 } |
| |
378 |
| |
379 #[replace_float_literals(F::cast_from(literal))] |
| |
380 pub(crate) fn prune_and_maybe_simple_merge< |
| |
381 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, State, const N : usize |
| |
382 >( |
| |
383 μ : &mut DiscreteMeasure<Loc<F, N>, F>, |
| |
384 minus_τv : &BTFN<F, GA, BTA, N>, |
| |
385 μ_base : &DiscreteMeasure<Loc<F, N>, F>, |
| |
386 op𝒟 : &'a 𝒟, |
| |
387 τ : F, |
| |
388 ε : F, |
| |
389 config : &FBGenericConfig<F>, |
| |
390 reg : &Reg, |
| |
391 state : &State, |
| |
392 stats : &mut IterInfo<F, N>, |
| |
393 ) |
| |
394 where F : Float + ToNalgebraRealField, |
| |
395 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| |
396 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| |
397 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
| |
398 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
| |
399 𝒟::Codomain : RealMapping<F, N>, |
| |
400 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
401 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
402 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
| |
403 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
| |
404 Reg : RegTerm<F, N>, |
| |
405 State : AlgIteratorState { |
| |
406 if state.iteration() % config.merge_every == 0 { |
| |
407 let n_before_merge = μ.len(); |
| |
408 μ.merge_spikes(config.merging, |μ_candidate| { |
| |
409 let μd = μ_diff(&μ_candidate, &μ_base, None, config); |
| |
410 let mut d = minus_τv + op𝒟.preapply(μd); |
| |
411 |
| |
412 reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) |
| |
413 .then_some(()) |
| |
414 }); |
| |
415 debug_assert!(μ.len() >= n_before_merge); |
| |
416 stats.merged += μ.len() - n_before_merge; |
| |
417 } |
| |
418 |
| |
419 let n_before_prune = μ.len(); |
| |
420 μ.prune(); |
| |
421 debug_assert!(μ.len() <= n_before_prune); |
| |
422 stats.pruned += n_before_prune - μ.len(); |
| |
423 } |
| |
424 |
| |
425 #[replace_float_literals(F::cast_from(literal))] |
| |
426 pub(crate) fn postprocess< |
| |
427 F : Float, |
| |
428 V : Euclidean<F> + Clone, |
| |
429 A : GEMV<F, DiscreteMeasure<Loc<F, N>, F>, Codomain = V>, |
| |
430 D : DataTerm<F, V, N>, |
| |
431 const N : usize |
| |
432 > ( |
| |
433 mut μ : DiscreteMeasure<Loc<F, N>, F>, |
| |
434 config : &FBGenericConfig<F>, |
| |
435 dataterm : D, |
| |
436 opA : &A, |
| |
437 b : &V, |
| |
438 ) -> DiscreteMeasure<Loc<F, N>, F> |
| |
439 where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { |
| |
440 μ.merge_spikes_fitness(config.merging, |
| |
441 |μ̃| dataterm.calculate_fit_op(μ̃, opA, b), |
| |
442 |&v| v); |
| |
443 μ.prune(); |
| |
444 μ |
| |
445 } |
| |
446 |
| |
447 /// Iteratively solve the pointsource localisation problem using forward-backward splitting. |
| 244 /// |
448 /// |
| 245 /// The idea is that the residual $Aμ - b$ in the forward step can be replaced by an arbitrary |
449 /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the |
| 246 /// value. For example, to implement [primal-dual proximal splitting][crate::pdps] we replace it |
|
| 247 /// with the dual variable $y$. We can then also implement alternative data terms, as the |
|
| 248 /// (pre)differential of $F(μ)=F\_0(Aμ-b)$ is $F\'(μ) = A\_*F\_0\'(Aμ-b)$. In the case of the |
|
| 249 /// quadratic fidelity $F_0(y)=\frac{1}{2}\\|y\\|_2^2$ in a Hilbert space, of course, |
|
| 250 /// $F\_0\'(Aμ-b)=Aμ-b$ is the residual. |
|
| 251 pub trait FBSpecialisation<F : Float, Observable : Euclidean<F>, const N : usize> : Sized { |
|
| 252 /// Updates the residual and does any necessary pruning of `μ`. |
|
| 253 /// |
|
| 254 /// Returns the new residual and possibly a new step length. |
|
| 255 /// |
|
| 256 /// The measure `μ` may also be modified to apply, e.g., inertia to it. |
|
| 257 /// The updated residual should correspond to the residual at `μ`. |
|
| 258 /// See the [trait documentation][FBSpecialisation] for the use and meaning of the residual. |
|
| 259 /// |
|
| 260 /// The parameter `μ_base` is the base point of the iteration, typically the previous iterate, |
|
| 261 /// but for, e.g., FISTA has inertia applied to it. |
|
| 262 fn update( |
|
| 263 &mut self, |
|
| 264 μ : &mut DiscreteMeasure<Loc<F, N>, F>, |
|
| 265 μ_base : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 266 ) -> (Observable, Option<F>); |
|
| 267 |
|
| 268 /// Calculates the data term value corresponding to iterate `μ` and available residual. |
|
| 269 /// |
|
| 270 /// Inertia and other modifications, as deemed, necessary, should be applied to `μ`. |
|
| 271 /// |
|
| 272 /// The blanket implementation correspondsn to the 2-norm-squared data fidelity |
|
| 273 /// $\\|\text{residual}\\|\_2^2/2$. |
|
| 274 fn calculate_fit( |
|
| 275 &self, |
|
| 276 _μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 277 residual : &Observable |
|
| 278 ) -> F { |
|
| 279 residual.norm2_squared_div2() |
|
| 280 } |
|
| 281 |
|
| 282 /// Calculates the data term value at $μ$. |
|
| 283 /// |
|
| 284 /// Unlike [`Self::calculate_fit`], no inertia, etc., should be applied to `μ`. |
|
| 285 fn calculate_fit_simple( |
|
| 286 &self, |
|
| 287 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 288 ) -> F; |
|
| 289 |
|
| 290 /// Returns the final iterate after any necessary postprocess pruning, merging, etc. |
|
| 291 fn postprocess(self, mut μ : DiscreteMeasure<Loc<F, N>, F>, merging : SpikeMergingMethod<F>) |
|
| 292 -> DiscreteMeasure<Loc<F, N>, F> |
|
| 293 where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { |
|
| 294 μ.merge_spikes_fitness(merging, |
|
| 295 |μ̃| self.calculate_fit_simple(μ̃), |
|
| 296 |&v| v); |
|
| 297 μ.prune(); |
|
| 298 μ |
|
| 299 } |
|
| 300 |
|
| 301 /// Returns measure to be used for value calculations, which may differ from μ. |
|
| 302 fn value_μ<'c, 'b : 'c>(&'b self, μ : &'c DiscreteMeasure<Loc<F, N>, F>) |
|
| 303 -> &'c DiscreteMeasure<Loc<F, N>, F> { |
|
| 304 μ |
|
| 305 } |
|
| 306 } |
|
| 307 |
|
| 308 /// Specialisation of [`generic_pointsource_fb_reg`] to basic μFB. |
|
| 309 struct BasicFB< |
|
| 310 'a, |
|
| 311 F : Float + ToNalgebraRealField, |
|
| 312 A : ForwardModel<Loc<F, N>, F>, |
|
| 313 const N : usize |
|
| 314 > { |
|
| 315 /// The data |
|
| 316 b : &'a A::Observable, |
|
| 317 /// The forward operator |
|
| 318 opA : &'a A, |
|
| 319 } |
|
| 320 |
|
| 321 /// Implementation of [`FBSpecialisation`] for basic μFB forward-backward splitting. |
|
| 322 #[replace_float_literals(F::cast_from(literal))] |
|
| 323 impl<'a, F : Float + ToNalgebraRealField , A : ForwardModel<Loc<F, N>, F>, const N : usize> |
|
| 324 FBSpecialisation<F, A::Observable, N> for BasicFB<'a, F, A, N> { |
|
| 325 fn update( |
|
| 326 &mut self, |
|
| 327 μ : &mut DiscreteMeasure<Loc<F, N>, F>, |
|
| 328 _μ_base : &DiscreteMeasure<Loc<F, N>, F> |
|
| 329 ) -> (A::Observable, Option<F>) { |
|
| 330 μ.prune(); |
|
| 331 //*residual = self.opA.apply(μ) - self.b; |
|
| 332 let mut residual = self.b.clone(); |
|
| 333 self.opA.gemv(&mut residual, 1.0, μ, -1.0); |
|
| 334 (residual, None) |
|
| 335 } |
|
| 336 |
|
| 337 fn calculate_fit_simple( |
|
| 338 &self, |
|
| 339 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 340 ) -> F { |
|
| 341 let mut residual = self.b.clone(); |
|
| 342 self.opA.gemv(&mut residual, 1.0, μ, -1.0); |
|
| 343 residual.norm2_squared_div2() |
|
| 344 } |
|
| 345 } |
|
| 346 |
|
| 347 /// Specialisation of [`generic_pointsource_fb_reg`] to FISTA. |
|
| 348 struct FISTA< |
|
| 349 'a, |
|
| 350 F : Float + ToNalgebraRealField, |
|
| 351 A : ForwardModel<Loc<F, N>, F>, |
|
| 352 const N : usize |
|
| 353 > { |
|
| 354 /// The data |
|
| 355 b : &'a A::Observable, |
|
| 356 /// The forward operator |
|
| 357 opA : &'a A, |
|
| 358 /// Current inertial parameter |
|
| 359 λ : F, |
|
| 360 /// Previous iterate without inertia applied. |
|
| 361 /// We need to store this here because `μ_base` passed to [`FBSpecialisation::update`] will |
|
| 362 /// have inertia applied to it, so is not useful to use. |
|
| 363 μ_prev : DiscreteMeasure<Loc<F, N>, F>, |
|
| 364 } |
|
| 365 |
|
| 366 /// Implementation of [`FBSpecialisation`] for μFISTA inertial forward-backward splitting. |
|
| 367 #[replace_float_literals(F::cast_from(literal))] |
|
| 368 impl<'a, F : Float + ToNalgebraRealField, A : ForwardModel<Loc<F, N>, F>, const N : usize> |
|
| 369 FBSpecialisation<F, A::Observable, N> for FISTA<'a, F, A, N> { |
|
| 370 fn update( |
|
| 371 &mut self, |
|
| 372 μ : &mut DiscreteMeasure<Loc<F, N>, F>, |
|
| 373 _μ_base : &DiscreteMeasure<Loc<F, N>, F> |
|
| 374 ) -> (A::Observable, Option<F>) { |
|
| 375 // Update inertial parameters |
|
| 376 let λ_prev = self.λ; |
|
| 377 self.λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); |
|
| 378 let θ = self.λ / λ_prev - self.λ; |
|
| 379 // Perform inertial update on μ. |
|
| 380 // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ |
|
| 381 // and μ_prev have zero weight. Since both have weights from the finite-dimensional |
|
| 382 // subproblem with a proximal projection step, this is likely to happen when the |
|
| 383 // spike is not needed. A copy of the pruned μ without artithmetic performed is |
|
| 384 // stored in μ_prev. |
|
| 385 μ.pruning_sub(1.0 + θ, θ, &mut self.μ_prev); |
|
| 386 |
|
| 387 //*residual = self.opA.apply(μ) - self.b; |
|
| 388 let mut residual = self.b.clone(); |
|
| 389 self.opA.gemv(&mut residual, 1.0, μ, -1.0); |
|
| 390 (residual, None) |
|
| 391 } |
|
| 392 |
|
| 393 fn calculate_fit_simple( |
|
| 394 &self, |
|
| 395 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 396 ) -> F { |
|
| 397 let mut residual = self.b.clone(); |
|
| 398 self.opA.gemv(&mut residual, 1.0, μ, -1.0); |
|
| 399 residual.norm2_squared_div2() |
|
| 400 } |
|
| 401 |
|
| 402 fn calculate_fit( |
|
| 403 &self, |
|
| 404 _μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 405 _residual : &A::Observable |
|
| 406 ) -> F { |
|
| 407 self.calculate_fit_simple(&self.μ_prev) |
|
| 408 } |
|
| 409 |
|
| 410 // For FISTA we need to do a final pruning as well, due to the limited |
|
| 411 // pruning that can be done on each step. |
|
| 412 fn postprocess(mut self, μ_base : DiscreteMeasure<Loc<F, N>, F>, merging : SpikeMergingMethod<F>) |
|
| 413 -> DiscreteMeasure<Loc<F, N>, F> |
|
| 414 where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { |
|
| 415 let mut μ = self.μ_prev; |
|
| 416 self.μ_prev = μ_base; |
|
| 417 μ.merge_spikes_fitness(merging, |
|
| 418 |μ̃| self.calculate_fit_simple(μ̃), |
|
| 419 |&v| v); |
|
| 420 μ.prune(); |
|
| 421 μ |
|
| 422 } |
|
| 423 |
|
| 424 fn value_μ<'c, 'b : 'c>(&'c self, _μ : &'c DiscreteMeasure<Loc<F, N>, F>) |
|
| 425 -> &'c DiscreteMeasure<Loc<F, N>, F> { |
|
| 426 &self.μ_prev |
|
| 427 } |
|
| 428 } |
|
| 429 |
|
| 430 |
|
| 431 /// Abstraction of regularisation terms for [`generic_pointsource_fb_reg`]. |
|
| 432 pub trait RegTerm<F : Float + ToNalgebraRealField, const N : usize> |
|
| 433 : for<'a> Apply<&'a DiscreteMeasure<Loc<F, N>, F>, Output = F> { |
|
| 434 /// Approximately solve the problem |
|
| 435 /// <div>$$ |
|
| 436 /// \min_{x ∈ ℝ^n} \frac{1}{2} x^⊤Ax - g^⊤ x + τ G(x) |
|
| 437 /// $$</div> |
|
| 438 /// for $G$ depending on the trait implementation. |
|
| 439 /// |
|
| 440 /// The parameter `mA` is $A$. An estimate for its opeator norm should be provided in |
|
| 441 /// `mA_normest`. The initial iterate and output is `x`. The current main tolerance is `ε`. |
|
| 442 /// |
|
| 443 /// Returns the number of iterations taken. |
|
| 444 fn solve_findim( |
|
| 445 &self, |
|
| 446 mA : &DMatrix<F::MixedType>, |
|
| 447 g : &DVector<F::MixedType>, |
|
| 448 τ : F, |
|
| 449 x : &mut DVector<F::MixedType>, |
|
| 450 mA_normest : F, |
|
| 451 ε : F, |
|
| 452 config : &FBGenericConfig<F> |
|
| 453 ) -> usize; |
|
| 454 |
|
| 455 /// Find a point where `d` may violate the tolerance `ε`. |
|
| 456 /// |
|
| 457 /// If `skip_by_rough_check` is set, do not find the point if a rough check indicates that we |
|
| 458 /// are in bounds. `ε` is the current main tolerance and `τ` a scaling factor for the |
|
| 459 /// regulariser. |
|
| 460 /// |
|
| 461 /// Returns `None` if `d` is in bounds either based on the rough check, or a more precise check |
|
| 462 /// terminating early. Otherwise returns a possibly violating point, the value of `d` there, |
|
| 463 /// and a boolean indicating whether the found point is in bounds. |
|
| 464 fn find_tolerance_violation<G, BT>( |
|
| 465 &self, |
|
| 466 d : &mut BTFN<F, G, BT, N>, |
|
| 467 τ : F, |
|
| 468 ε : F, |
|
| 469 skip_by_rough_check : bool, |
|
| 470 config : &FBGenericConfig<F>, |
|
| 471 ) -> Option<(Loc<F, N>, F, bool)> |
|
| 472 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 473 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 474 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 475 + LocalAnalysis<F, Bounds<F>, N>; |
|
| 476 |
|
| 477 /// Verify that `d` is in bounds `ε` for a merge candidate `μ` |
|
| 478 /// |
|
| 479 /// `ε` is the current main tolerance and `τ` a scaling factor for the regulariser. |
|
| 480 fn verify_merge_candidate<G, BT>( |
|
| 481 &self, |
|
| 482 d : &mut BTFN<F, G, BT, N>, |
|
| 483 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 484 τ : F, |
|
| 485 ε : F, |
|
| 486 config : &FBGenericConfig<F>, |
|
| 487 ) -> bool |
|
| 488 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 489 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 490 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 491 + LocalAnalysis<F, Bounds<F>, N>; |
|
| 492 |
|
| 493 fn target_bounds(&self, τ : F, ε : F) -> Option<Bounds<F>>; |
|
| 494 |
|
| 495 /// Returns a scaling factor for the tolerance sequence. |
|
| 496 /// |
|
| 497 /// Typically this is the regularisation parameter. |
|
| 498 fn tolerance_scaling(&self) -> F; |
|
| 499 } |
|
| 500 |
|
| 501 #[replace_float_literals(F::cast_from(literal))] |
|
| 502 impl<F : Float + ToNalgebraRealField, const N : usize> RegTerm<F, N> for NonnegRadonRegTerm<F> |
|
| 503 where Cube<F, N> : P2Minimise<Loc<F, N>, F> { |
|
| 504 fn solve_findim( |
|
| 505 &self, |
|
| 506 mA : &DMatrix<F::MixedType>, |
|
| 507 g : &DVector<F::MixedType>, |
|
| 508 τ : F, |
|
| 509 x : &mut DVector<F::MixedType>, |
|
| 510 mA_normest : F, |
|
| 511 ε : F, |
|
| 512 config : &FBGenericConfig<F> |
|
| 513 ) -> usize { |
|
| 514 let inner_tolerance = ε * config.inner.tolerance_mult; |
|
| 515 let inner_it = config.inner.iterator_options.stop_target(inner_tolerance); |
|
| 516 let inner_τ = config.inner.τ0 / mA_normest; |
|
| 517 quadratic_nonneg(config.inner.method, mA, g, τ * self.α(), x, |
|
| 518 inner_τ, inner_it) |
|
| 519 } |
|
| 520 |
|
| 521 #[inline] |
|
| 522 fn find_tolerance_violation<G, BT>( |
|
| 523 &self, |
|
| 524 d : &mut BTFN<F, G, BT, N>, |
|
| 525 τ : F, |
|
| 526 ε : F, |
|
| 527 skip_by_rough_check : bool, |
|
| 528 config : &FBGenericConfig<F>, |
|
| 529 ) -> Option<(Loc<F, N>, F, bool)> |
|
| 530 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 531 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 532 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 533 + LocalAnalysis<F, Bounds<F>, N> { |
|
| 534 let τα = τ * self.α(); |
|
| 535 let keep_below = τα + ε; |
|
| 536 let maximise_above = τα + ε * config.insertion_cutoff_factor; |
|
| 537 let refinement_tolerance = ε * config.refinement.tolerance_mult; |
|
| 538 |
|
| 539 // If preliminary check indicates that we are in bonds, and if it otherwise matches |
|
| 540 // the insertion strategy, skip insertion. |
|
| 541 if skip_by_rough_check && d.bounds().upper() <= keep_below { |
|
| 542 None |
|
| 543 } else { |
|
| 544 // If the rough check didn't indicate no insertion needed, find maximising point. |
|
| 545 d.maximise_above(maximise_above, refinement_tolerance, config.refinement.max_steps) |
|
| 546 .map(|(ξ, v_ξ)| (ξ, v_ξ, v_ξ <= keep_below)) |
|
| 547 } |
|
| 548 } |
|
| 549 |
|
| 550 fn verify_merge_candidate<G, BT>( |
|
| 551 &self, |
|
| 552 d : &mut BTFN<F, G, BT, N>, |
|
| 553 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 554 τ : F, |
|
| 555 ε : F, |
|
| 556 config : &FBGenericConfig<F>, |
|
| 557 ) -> bool |
|
| 558 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 559 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 560 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 561 + LocalAnalysis<F, Bounds<F>, N> { |
|
| 562 let τα = τ * self.α(); |
|
| 563 let refinement_tolerance = ε * config.refinement.tolerance_mult; |
|
| 564 let merge_tolerance = config.merge_tolerance_mult * ε; |
|
| 565 let keep_below = τα + merge_tolerance; |
|
| 566 let keep_supp_above = τα - merge_tolerance; |
|
| 567 let bnd = d.bounds(); |
|
| 568 |
|
| 569 return ( |
|
| 570 bnd.lower() >= keep_supp_above |
|
| 571 || |
|
| 572 μ.iter_spikes().map(|&DeltaMeasure{ α : β, ref x }| { |
|
| 573 (β == 0.0) || d.apply(x) >= keep_supp_above |
|
| 574 }).all(std::convert::identity) |
|
| 575 ) && ( |
|
| 576 bnd.upper() <= keep_below |
|
| 577 || |
|
| 578 d.has_upper_bound(keep_below, refinement_tolerance, config.refinement.max_steps) |
|
| 579 ) |
|
| 580 } |
|
| 581 |
|
| 582 fn target_bounds(&self, τ : F, ε : F) -> Option<Bounds<F>> { |
|
| 583 let τα = τ * self.α(); |
|
| 584 Some(Bounds(τα - ε, τα + ε)) |
|
| 585 } |
|
| 586 |
|
| 587 fn tolerance_scaling(&self) -> F { |
|
| 588 self.α() |
|
| 589 } |
|
| 590 } |
|
| 591 |
|
| 592 #[replace_float_literals(F::cast_from(literal))] |
|
| 593 impl<F : Float + ToNalgebraRealField, const N : usize> RegTerm<F, N> for RadonRegTerm<F> |
|
| 594 where Cube<F, N> : P2Minimise<Loc<F, N>, F> { |
|
| 595 fn solve_findim( |
|
| 596 &self, |
|
| 597 mA : &DMatrix<F::MixedType>, |
|
| 598 g : &DVector<F::MixedType>, |
|
| 599 τ : F, |
|
| 600 x : &mut DVector<F::MixedType>, |
|
| 601 mA_normest: F, |
|
| 602 ε : F, |
|
| 603 config : &FBGenericConfig<F> |
|
| 604 ) -> usize { |
|
| 605 let inner_tolerance = ε * config.inner.tolerance_mult; |
|
| 606 let inner_it = config.inner.iterator_options.stop_target(inner_tolerance); |
|
| 607 let inner_τ = config.inner.τ0 / mA_normest; |
|
| 608 quadratic_unconstrained(config.inner.method, mA, g, τ * self.α(), x, |
|
| 609 inner_τ, inner_it) |
|
| 610 } |
|
| 611 |
|
| 612 fn find_tolerance_violation<G, BT>( |
|
| 613 &self, |
|
| 614 d : &mut BTFN<F, G, BT, N>, |
|
| 615 τ : F, |
|
| 616 ε : F, |
|
| 617 skip_by_rough_check : bool, |
|
| 618 config : &FBGenericConfig<F>, |
|
| 619 ) -> Option<(Loc<F, N>, F, bool)> |
|
| 620 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 621 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 622 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 623 + LocalAnalysis<F, Bounds<F>, N> { |
|
| 624 let τα = τ * self.α(); |
|
| 625 let keep_below = τα + ε; |
|
| 626 let keep_above = -τα - ε; |
|
| 627 let maximise_above = τα + ε * config.insertion_cutoff_factor; |
|
| 628 let minimise_below = -τα - ε * config.insertion_cutoff_factor; |
|
| 629 let refinement_tolerance = ε * config.refinement.tolerance_mult; |
|
| 630 |
|
| 631 // If preliminary check indicates that we are in bonds, and if it otherwise matches |
|
| 632 // the insertion strategy, skip insertion. |
|
| 633 if skip_by_rough_check && Bounds(keep_above, keep_below).superset(&d.bounds()) { |
|
| 634 None |
|
| 635 } else { |
|
| 636 // If the rough check didn't indicate no insertion needed, find maximising point. |
|
| 637 let mx = d.maximise_above(maximise_above, refinement_tolerance, |
|
| 638 config.refinement.max_steps); |
|
| 639 let mi = d.minimise_below(minimise_below, refinement_tolerance, |
|
| 640 config.refinement.max_steps); |
|
| 641 |
|
| 642 match (mx, mi) { |
|
| 643 (None, None) => None, |
|
| 644 (Some((ξ, v_ξ)), None) => Some((ξ, v_ξ, keep_below >= v_ξ)), |
|
| 645 (None, Some((ζ, v_ζ))) => Some((ζ, v_ζ, keep_above <= v_ζ)), |
|
| 646 (Some((ξ, v_ξ)), Some((ζ, v_ζ))) => { |
|
| 647 if v_ξ - τα > τα - v_ζ { |
|
| 648 Some((ξ, v_ξ, keep_below >= v_ξ)) |
|
| 649 } else { |
|
| 650 Some((ζ, v_ζ, keep_above <= v_ζ)) |
|
| 651 } |
|
| 652 } |
|
| 653 } |
|
| 654 } |
|
| 655 } |
|
| 656 |
|
| 657 fn verify_merge_candidate<G, BT>( |
|
| 658 &self, |
|
| 659 d : &mut BTFN<F, G, BT, N>, |
|
| 660 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 661 τ : F, |
|
| 662 ε : F, |
|
| 663 config : &FBGenericConfig<F>, |
|
| 664 ) -> bool |
|
| 665 where BT : BTSearch<F, N, Agg=Bounds<F>>, |
|
| 666 G : SupportGenerator<F, N, Id=BT::Data>, |
|
| 667 G::SupportType : Mapping<Loc<F, N>,Codomain=F> |
|
| 668 + LocalAnalysis<F, Bounds<F>, N> { |
|
| 669 let τα = τ * self.α(); |
|
| 670 let refinement_tolerance = ε * config.refinement.tolerance_mult; |
|
| 671 let merge_tolerance = config.merge_tolerance_mult * ε; |
|
| 672 let keep_below = τα + merge_tolerance; |
|
| 673 let keep_above = -τα - merge_tolerance; |
|
| 674 let keep_supp_pos_above = τα - merge_tolerance; |
|
| 675 let keep_supp_neg_below = -τα + merge_tolerance; |
|
| 676 let bnd = d.bounds(); |
|
| 677 |
|
| 678 return ( |
|
| 679 (bnd.lower() >= keep_supp_pos_above && bnd.upper() <= keep_supp_neg_below) |
|
| 680 || |
|
| 681 μ.iter_spikes().map(|&DeltaMeasure{ α : β, ref x }| { |
|
| 682 use std::cmp::Ordering::*; |
|
| 683 match β.partial_cmp(&0.0) { |
|
| 684 Some(Greater) => d.apply(x) >= keep_supp_pos_above, |
|
| 685 Some(Less) => d.apply(x) <= keep_supp_neg_below, |
|
| 686 _ => true, |
|
| 687 } |
|
| 688 }).all(std::convert::identity) |
|
| 689 ) && ( |
|
| 690 bnd.upper() <= keep_below |
|
| 691 || |
|
| 692 d.has_upper_bound(keep_below, refinement_tolerance, |
|
| 693 config.refinement.max_steps) |
|
| 694 ) && ( |
|
| 695 bnd.lower() >= keep_above |
|
| 696 || |
|
| 697 d.has_lower_bound(keep_above, refinement_tolerance, |
|
| 698 config.refinement.max_steps) |
|
| 699 ) |
|
| 700 } |
|
| 701 |
|
| 702 fn target_bounds(&self, τ : F, ε : F) -> Option<Bounds<F>> { |
|
| 703 let τα = τ * self.α(); |
|
| 704 Some(Bounds(-τα - ε, τα + ε)) |
|
| 705 } |
|
| 706 |
|
| 707 fn tolerance_scaling(&self) -> F { |
|
| 708 self.α() |
|
| 709 } |
|
| 710 } |
|
| 711 |
|
| 712 |
|
| 713 /// Generic implementation of [`pointsource_fb_reg`]. |
|
| 714 /// |
|
| 715 /// The method can be specialised to even primal-dual proximal splitting through the |
|
| 716 /// [`FBSpecialisation`] parameter `specialisation`. |
|
| 717 /// The settings in `config` have their [respective documentation](FBGenericConfig). `opA` is the |
|
| 718 /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
450 /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
| 719 /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution |
451 /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution |
| 720 /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control |
452 /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control |
| 721 /// as documented in [`alg_tools::iterate`]. |
453 /// as documented in [`alg_tools::iterate`]. |
| |
454 /// |
| |
455 /// For details on the mathematical formulation, see the [module level](self) documentation. |
| 722 /// |
456 /// |
| 723 /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of |
457 /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of |
| 724 /// sums of simple functions usign bisection trees, and the related |
458 /// sums of simple functions usign bisection trees, and the related |
| 725 /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions |
459 /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions |
| 726 /// active at a specific points, and to maximise their sums. Through the implementation of the |
460 /// active at a specific points, and to maximise their sums. Through the implementation of the |
| 727 /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features |
461 /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features |
| 728 /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. |
462 /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. |
| 729 /// |
463 /// |
| 730 /// Returns the final iterate. |
464 /// Returns the final iterate. |
| 731 #[replace_float_literals(F::cast_from(literal))] |
465 #[replace_float_literals(F::cast_from(literal))] |
| 732 pub fn generic_pointsource_fb_reg< |
466 pub fn pointsource_fb_reg< |
| 733 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Spec, Reg, const N : usize |
467 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize |
| 734 >( |
468 >( |
| 735 opA : &'a A, |
|
| 736 reg : Reg, |
|
| 737 op𝒟 : &'a 𝒟, |
|
| 738 mut τ : F, |
|
| 739 config : &FBGenericConfig<F>, |
|
| 740 iterator : I, |
|
| 741 mut plotter : SeqPlotter<F, N>, |
|
| 742 mut residual : A::Observable, |
|
| 743 mut specialisation : Spec |
|
| 744 ) -> DiscreteMeasure<Loc<F, N>, F> |
|
| 745 where F : Float + ToNalgebraRealField, |
|
| 746 I : AlgIteratorFactory<IterInfo<F, N>>, |
|
| 747 Spec : FBSpecialisation<F, A::Observable, N>, |
|
| 748 A::Observable : std::ops::MulAssign<F>, |
|
| 749 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
|
| 750 A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
|
| 751 + Lipschitz<𝒟, FloatType=F>, |
|
| 752 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
|
| 753 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
|
| 754 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
|
| 755 𝒟::Codomain : RealMapping<F, N>, |
|
| 756 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
| 757 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
| 758 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
|
| 759 PlotLookup : Plotting<N>, |
|
| 760 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
|
| 761 Reg : RegTerm<F, N> { |
|
| 762 |
|
| 763 // Set up parameters |
|
| 764 let quiet = iterator.is_quiet(); |
|
| 765 let op𝒟norm = op𝒟.opnorm_bound(); |
|
| 766 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
|
| 767 // by τ compared to the conditional gradient approach. |
|
| 768 let tolerance = config.tolerance * τ * reg.tolerance_scaling(); |
|
| 769 let mut ε = tolerance.initial(); |
|
| 770 |
|
| 771 // Initialise operators |
|
| 772 let preadjA = opA.preadjoint(); |
|
| 773 |
|
| 774 // Initialise iterates |
|
| 775 let mut μ = DiscreteMeasure::new(); |
|
| 776 |
|
| 777 let mut inner_iters = 0; |
|
| 778 let mut this_iters = 0; |
|
| 779 let mut pruned = 0; |
|
| 780 let mut merged = 0; |
|
| 781 |
|
| 782 let μ_diff = |μ_new : &DiscreteMeasure<Loc<F, N>, F>, |
|
| 783 μ_base : &DiscreteMeasure<Loc<F, N>, F>| { |
|
| 784 let mut ν : DiscreteMeasure<Loc<F, N>, F> = match config.insertion_style { |
|
| 785 InsertionStyle::Reuse => { |
|
| 786 μ_new.iter_spikes() |
|
| 787 .zip(μ_base.iter_masses().chain(std::iter::repeat(0.0))) |
|
| 788 .map(|(δ, α_base)| (δ.x, α_base - δ.α)) |
|
| 789 .collect() |
|
| 790 }, |
|
| 791 InsertionStyle::Zero => { |
|
| 792 μ_new.iter_spikes() |
|
| 793 .map(|δ| -δ) |
|
| 794 .chain(μ_base.iter_spikes().copied()) |
|
| 795 .collect() |
|
| 796 } |
|
| 797 }; |
|
| 798 ν.prune(); // Potential small performance improvement |
|
| 799 ν |
|
| 800 }; |
|
| 801 |
|
| 802 // Run the algorithm |
|
| 803 iterator.iterate(|state| { |
|
| 804 // Maximum insertion count and measure difference calculation depend on insertion style. |
|
| 805 let (m, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { |
|
| 806 (i, Some((l, k))) if i <= l => (k, false), |
|
| 807 _ => (config.max_insertions, !quiet), |
|
| 808 }; |
|
| 809 let max_insertions = match config.insertion_style { |
|
| 810 InsertionStyle::Zero => { |
|
| 811 todo!("InsertionStyle::Zero does not currently work with FISTA, so diabled."); |
|
| 812 // let n = μ.len(); |
|
| 813 // μ = DiscreteMeasure::new(); |
|
| 814 // n + m |
|
| 815 }, |
|
| 816 InsertionStyle::Reuse => m, |
|
| 817 }; |
|
| 818 |
|
| 819 // Calculate smooth part of surrogate model. |
|
| 820 // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` |
|
| 821 // has no significant overhead. For some reosn Rust doesn't allow us simply moving |
|
| 822 // the residual and replacing it below before the end of this closure. |
|
| 823 residual *= -τ; |
|
| 824 let r = std::mem::replace(&mut residual, opA.empty_observable()); |
|
| 825 let minus_τv = preadjA.apply(r); // minus_τv = -τA^*(Aμ^k-b) |
|
| 826 // TODO: should avoid a second copy of μ here; μ_base already stores a copy. |
|
| 827 let ω0 = op𝒟.apply(μ.clone()); // 𝒟μ^k |
|
| 828 //let g = &minus_τv + ω0; // Linear term of surrogate model |
|
| 829 |
|
| 830 // Save current base point |
|
| 831 let μ_base = μ.clone(); |
|
| 832 |
|
| 833 // Add points to support until within error tolerance or maximum insertion count reached. |
|
| 834 let mut count = 0; |
|
| 835 let (within_tolerances, d) = 'insertion: loop { |
|
| 836 if μ.len() > 0 { |
|
| 837 // Form finite-dimensional subproblem. The subproblem references to the original μ^k |
|
| 838 // from the beginning of the iteration are all contained in the immutable c and g. |
|
| 839 let à = op𝒟.findim_matrix(μ.iter_locations()); |
|
| 840 let g̃ = DVector::from_iterator(μ.len(), |
|
| 841 μ.iter_locations() |
|
| 842 .map(|ζ| minus_τv.apply(ζ) + ω0.apply(ζ)) |
|
| 843 .map(F::to_nalgebra_mixed)); |
|
| 844 let mut x = μ.masses_dvector(); |
|
| 845 |
|
| 846 // The gradient of the forward component of the inner objective is C^*𝒟Cx - g̃. |
|
| 847 // We have |C^*𝒟Cx|_2 = sup_{|z|_2 ≤ 1} ⟨z, C^*𝒟Cx⟩ = sup_{|z|_2 ≤ 1} ⟨Cz|𝒟Cx⟩ |
|
| 848 // ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟Cx|_∞ ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟| |Cx|_ℳ |
|
| 849 // ≤ sup_{|z|_2 ≤ 1} |z|_1 |𝒟| |x|_1 ≤ sup_{|z|_2 ≤ 1} n |z|_2 |𝒟| |x|_2 |
|
| 850 // = n |𝒟| |x|_2, where n is the number of points. Therefore |
|
| 851 let Ã_normest = op𝒟norm * F::cast_from(μ.len()); |
|
| 852 |
|
| 853 // Solve finite-dimensional subproblem. |
|
| 854 inner_iters += reg.solve_findim(&Ã, &g̃, τ, &mut x, Ã_normest, ε, config); |
|
| 855 |
|
| 856 // Update masses of μ based on solution of finite-dimensional subproblem. |
|
| 857 μ.set_masses_dvector(&x); |
|
| 858 } |
|
| 859 |
|
| 860 // Form d = ω0 - τv - 𝒟μ = -𝒟(μ - μ^k) - τv for checking the proximate optimality |
|
| 861 // conditions in the predual space, and finding new points for insertion, if necessary. |
|
| 862 let mut d = &minus_τv + op𝒟.preapply(μ_diff(&μ, &μ_base)); |
|
| 863 |
|
| 864 // If no merging heuristic is used, let's be more conservative about spike insertion, |
|
| 865 // and skip it after first round. If merging is done, being more greedy about spike |
|
| 866 // insertion also seems to improve performance. |
|
| 867 let skip_by_rough_check = if let SpikeMergingMethod::None = config.merging { |
|
| 868 false |
|
| 869 } else { |
|
| 870 count > 0 |
|
| 871 }; |
|
| 872 |
|
| 873 // Find a spike to insert, if needed |
|
| 874 let (ξ, _v_ξ, in_bounds) = match reg.find_tolerance_violation( |
|
| 875 &mut d, τ, ε, skip_by_rough_check, config |
|
| 876 ) { |
|
| 877 None => break 'insertion (true, d), |
|
| 878 Some(res) => res, |
|
| 879 }; |
|
| 880 |
|
| 881 // Break if maximum insertion count reached |
|
| 882 if count >= max_insertions { |
|
| 883 break 'insertion (in_bounds, d) |
|
| 884 } |
|
| 885 |
|
| 886 // No point in optimising the weight here; the finite-dimensional algorithm is fast. |
|
| 887 μ += DeltaMeasure { x : ξ, α : 0.0 }; |
|
| 888 count += 1; |
|
| 889 }; |
|
| 890 |
|
| 891 if !within_tolerances && warn_insertions { |
|
| 892 // Complain (but continue) if we failed to get within tolerances |
|
| 893 // by inserting more points. |
|
| 894 let err = format!("Maximum insertions reached without achieving \ |
|
| 895 subproblem solution tolerance"); |
|
| 896 println!("{}", err.red()); |
|
| 897 } |
|
| 898 |
|
| 899 // Merge spikes |
|
| 900 if state.iteration() % config.merge_every == 0 { |
|
| 901 let n_before_merge = μ.len(); |
|
| 902 μ.merge_spikes(config.merging, |μ_candidate| { |
|
| 903 let mut d = &minus_τv + op𝒟.preapply(μ_diff(&μ_candidate, &μ_base)); |
|
| 904 |
|
| 905 reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) |
|
| 906 .then_some(()) |
|
| 907 }); |
|
| 908 debug_assert!(μ.len() >= n_before_merge); |
|
| 909 merged += μ.len() - n_before_merge; |
|
| 910 } |
|
| 911 |
|
| 912 let n_before_prune = μ.len(); |
|
| 913 (residual, τ) = match specialisation.update(&mut μ, &μ_base) { |
|
| 914 (r, None) => (r, τ), |
|
| 915 (r, Some(new_τ)) => (r, new_τ) |
|
| 916 }; |
|
| 917 debug_assert!(μ.len() <= n_before_prune); |
|
| 918 pruned += n_before_prune - μ.len(); |
|
| 919 |
|
| 920 this_iters += 1; |
|
| 921 |
|
| 922 // Update main tolerance for next iteration |
|
| 923 let ε_prev = ε; |
|
| 924 ε = tolerance.update(ε, state.iteration()); |
|
| 925 |
|
| 926 // Give function value if needed |
|
| 927 state.if_verbose(|| { |
|
| 928 let value_μ = specialisation.value_μ(&μ); |
|
| 929 // Plot if so requested |
|
| 930 plotter.plot_spikes( |
|
| 931 format!("iter {} end; {}", state.iteration(), within_tolerances), &d, |
|
| 932 "start".to_string(), Some(&minus_τv), |
|
| 933 reg.target_bounds(τ, ε_prev), value_μ, |
|
| 934 ); |
|
| 935 // Calculate mean inner iterations and reset relevant counters. |
|
| 936 // Return the statistics |
|
| 937 let res = IterInfo { |
|
| 938 value : specialisation.calculate_fit(&μ, &residual) + reg.apply(value_μ), |
|
| 939 n_spikes : value_μ.len(), |
|
| 940 inner_iters, |
|
| 941 this_iters, |
|
| 942 merged, |
|
| 943 pruned, |
|
| 944 ε : ε_prev, |
|
| 945 postprocessing: config.postprocessing.then(|| value_μ.clone()), |
|
| 946 }; |
|
| 947 inner_iters = 0; |
|
| 948 this_iters = 0; |
|
| 949 merged = 0; |
|
| 950 pruned = 0; |
|
| 951 res |
|
| 952 }) |
|
| 953 }); |
|
| 954 |
|
| 955 specialisation.postprocess(μ, config.final_merging) |
|
| 956 } |
|
| 957 |
|
| 958 /// Iteratively solve the pointsource localisation problem using forward-backward splitting |
|
| 959 /// |
|
| 960 /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the |
|
| 961 /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
|
| 962 /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution |
|
| 963 /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control |
|
| 964 /// as documented in [`alg_tools::iterate`]. |
|
| 965 /// |
|
| 966 /// For details on the mathematical formulation, see the [module level](self) documentation. |
|
| 967 /// |
|
| 968 /// Returns the final iterate. |
|
| 969 #[replace_float_literals(F::cast_from(literal))] |
|
| 970 pub fn pointsource_fb_reg<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize>( |
|
| 971 opA : &'a A, |
469 opA : &'a A, |
| 972 b : &A::Observable, |
470 b : &A::Observable, |
| 973 reg : Reg, |
471 reg : Reg, |
| 974 op𝒟 : &'a 𝒟, |
472 op𝒟 : &'a 𝒟, |
| 975 config : &FBConfig<F>, |
473 fbconfig : &FBConfig<F>, |
| 976 iterator : I, |
474 iterator : I, |
| 977 plotter : SeqPlotter<F, N>, |
475 mut plotter : SeqPlotter<F, N>, |
| 978 ) -> DiscreteMeasure<Loc<F, N>, F> |
476 ) -> DiscreteMeasure<Loc<F, N>, F> |
| 979 where F : Float + ToNalgebraRealField, |
477 where F : Float + ToNalgebraRealField, |
| 980 I : AlgIteratorFactory<IterInfo<F, N>>, |
478 I : AlgIteratorFactory<IterInfo<F, N>>, |
| 981 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, |
479 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, |
| 982 //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow |
480 //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow |
| 983 A::Observable : std::ops::MulAssign<F>, |
481 A::Observable : std::ops::MulAssign<F>, |
| 984 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
482 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| 985 A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
483 A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
| 986 + Lipschitz<𝒟, FloatType=F>, |
484 + Lipschitz<&'a 𝒟, FloatType=F>, |
| 987 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
485 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| 988 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
486 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
| 989 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
487 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
| 990 𝒟::Codomain : RealMapping<F, N>, |
488 𝒟::Codomain : RealMapping<F, N>, |
| 991 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
489 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| 994 Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
492 Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
| 995 PlotLookup : Plotting<N>, |
493 PlotLookup : Plotting<N>, |
| 996 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
494 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
| 997 Reg : RegTerm<F, N> { |
495 Reg : RegTerm<F, N> { |
| 998 |
496 |
| 999 let initial_residual = -b; |
497 // Set up parameters |
| 1000 let τ = config.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); |
498 let config = &fbconfig.insertion; |
| 1001 |
499 let op𝒟norm = op𝒟.opnorm_bound(); |
| 1002 match config.meta { |
500 let τ = fbconfig.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); |
| 1003 FBMetaAlgorithm::None => generic_pointsource_fb_reg( |
501 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
| 1004 opA, reg, op𝒟, τ, &config.insertion, iterator, plotter, initial_residual, |
502 // by τ compared to the conditional gradient approach. |
| 1005 BasicFB{ b, opA }, |
503 let tolerance = config.tolerance * τ * reg.tolerance_scaling(); |
| 1006 ), |
504 let mut ε = tolerance.initial(); |
| 1007 FBMetaAlgorithm::InertiaFISTA => generic_pointsource_fb_reg( |
505 |
| 1008 opA, reg, op𝒟, τ, &config.insertion, iterator, plotter, initial_residual, |
506 // Initialise iterates |
| 1009 FISTA{ b, opA, λ : 1.0, μ_prev : DiscreteMeasure::new() }, |
507 let mut μ = DiscreteMeasure::new(); |
| 1010 ), |
508 let mut residual = -b; |
| 1011 } |
509 let mut stats = IterInfo::new(); |
| 1012 } |
510 |
| |
511 // Run the algorithm |
| |
512 iterator.iterate(|state| { |
| |
513 // Calculate smooth part of surrogate model. |
| |
514 // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` |
| |
515 // has no significant overhead. For some reosn Rust doesn't allow us simply moving |
| |
516 // the residual and replacing it below before the end of this closure. |
| |
517 residual *= -τ; |
| |
518 let r = std::mem::replace(&mut residual, opA.empty_observable()); |
| |
519 let minus_τv = opA.preadjoint().apply(r); |
| |
520 |
| |
521 // Save current base point |
| |
522 let μ_base = μ.clone(); |
| |
523 |
| |
524 // Insert and reweigh |
| |
525 let (d, within_tolerances) = insert_and_reweigh( |
| |
526 &mut μ, &minus_τv, &μ_base, None, |
| |
527 op𝒟, op𝒟norm, |
| |
528 τ, ε, |
| |
529 config, ®, state, &mut stats |
| |
530 ); |
| |
531 |
| |
532 // Prune and possibly merge spikes |
| |
533 prune_and_maybe_simple_merge( |
| |
534 &mut μ, &minus_τv, &μ_base, |
| |
535 op𝒟, |
| |
536 τ, ε, |
| |
537 config, ®, state, &mut stats |
| |
538 ); |
| |
539 |
| |
540 // Update residual |
| |
541 residual = calculate_residual(&μ, opA, b); |
| |
542 |
| |
543 // Update main tolerance for next iteration |
| |
544 let ε_prev = ε; |
| |
545 ε = tolerance.update(ε, state.iteration()); |
| |
546 stats.this_iters += 1; |
| |
547 |
| |
548 // Give function value if needed |
| |
549 state.if_verbose(|| { |
| |
550 // Plot if so requested |
| |
551 plotter.plot_spikes( |
| |
552 format!("iter {} end; {}", state.iteration(), within_tolerances), &d, |
| |
553 "start".to_string(), Some(&minus_τv), |
| |
554 reg.target_bounds(τ, ε_prev), &μ, |
| |
555 ); |
| |
556 // Calculate mean inner iterations and reset relevant counters. |
| |
557 // Return the statistics |
| |
558 let res = IterInfo { |
| |
559 value : residual.norm2_squared_div2() + reg.apply(&μ), |
| |
560 n_spikes : μ.len(), |
| |
561 ε : ε_prev, |
| |
562 postprocessing: config.postprocessing.then(|| μ.clone()), |
| |
563 .. stats |
| |
564 }; |
| |
565 stats = IterInfo::new(); |
| |
566 res |
| |
567 }) |
| |
568 }); |
| |
569 |
| |
570 postprocess(μ, config, L2Squared, opA, b) |
| |
571 } |
| |
572 |
| |
573 /// Iteratively solve the pointsource localisation problem using inertial forward-backward splitting. |
| |
574 /// |
| |
575 /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the |
| |
576 /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
| |
577 /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution |
| |
578 /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control |
| |
579 /// as documented in [`alg_tools::iterate`]. |
| |
580 /// |
| |
581 /// For details on the mathematical formulation, see the [module level](self) documentation. |
| |
582 /// |
| |
583 /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of |
| |
584 /// sums of simple functions usign bisection trees, and the related |
| |
585 /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions |
| |
586 /// active at a specific points, and to maximise their sums. Through the implementation of the |
| |
587 /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features |
| |
588 /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. |
| |
589 /// |
| |
590 /// Returns the final iterate. |
| |
591 #[replace_float_literals(F::cast_from(literal))] |
| |
592 pub fn pointsource_fista_reg< |
| |
593 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize |
| |
594 >( |
| |
595 opA : &'a A, |
| |
596 b : &A::Observable, |
| |
597 reg : Reg, |
| |
598 op𝒟 : &'a 𝒟, |
| |
599 fbconfig : &FBConfig<F>, |
| |
600 iterator : I, |
| |
601 mut plotter : SeqPlotter<F, N>, |
| |
602 ) -> DiscreteMeasure<Loc<F, N>, F> |
| |
603 where F : Float + ToNalgebraRealField, |
| |
604 I : AlgIteratorFactory<IterInfo<F, N>>, |
| |
605 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, |
| |
606 //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow |
| |
607 A::Observable : std::ops::MulAssign<F>, |
| |
608 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| |
609 A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
| |
610 + Lipschitz<&'a 𝒟, FloatType=F>, |
| |
611 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| |
612 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
| |
613 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
| |
614 𝒟::Codomain : RealMapping<F, N>, |
| |
615 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
616 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
| |
617 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
| |
618 Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
| |
619 PlotLookup : Plotting<N>, |
| |
620 DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, |
| |
621 Reg : RegTerm<F, N> { |
| |
622 |
| |
623 // Set up parameters |
| |
624 let config = &fbconfig.insertion; |
| |
625 let op𝒟norm = op𝒟.opnorm_bound(); |
| |
626 let τ = fbconfig.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); |
| |
627 let mut λ = 1.0; |
| |
628 // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
| |
629 // by τ compared to the conditional gradient approach. |
| |
630 let tolerance = config.tolerance * τ * reg.tolerance_scaling(); |
| |
631 let mut ε = tolerance.initial(); |
| |
632 |
| |
633 // Initialise iterates |
| |
634 let mut μ = DiscreteMeasure::new(); |
| |
635 let mut μ_prev = DiscreteMeasure::new(); |
| |
636 let mut residual = -b; |
| |
637 let mut stats = IterInfo::new(); |
| |
638 let mut warned_merging = false; |
| |
639 |
| |
640 // Run the algorithm |
| |
641 iterator.iterate(|state| { |
| |
642 // Calculate smooth part of surrogate model. |
| |
643 // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` |
| |
644 // has no significant overhead. For some reosn Rust doesn't allow us simply moving |
| |
645 // the residual and replacing it below before the end of this closure. |
| |
646 residual *= -τ; |
| |
647 let r = std::mem::replace(&mut residual, opA.empty_observable()); |
| |
648 let minus_τv = opA.preadjoint().apply(r); |
| |
649 |
| |
650 // Save current base point |
| |
651 let μ_base = μ.clone(); |
| |
652 |
| |
653 // Insert new spikes and reweigh |
| |
654 let (d, within_tolerances) = insert_and_reweigh( |
| |
655 &mut μ, &minus_τv, &μ_base, None, |
| |
656 op𝒟, op𝒟norm, |
| |
657 τ, ε, |
| |
658 config, ®, state, &mut stats |
| |
659 ); |
| |
660 |
| |
661 // (Do not) merge spikes. |
| |
662 if state.iteration() % config.merge_every == 0 { |
| |
663 match config.merging { |
| |
664 SpikeMergingMethod::None => { }, |
| |
665 _ => if !warned_merging { |
| |
666 let err = format!("Merging not supported for μFISTA"); |
| |
667 println!("{}", err.red()); |
| |
668 warned_merging = true; |
| |
669 } |
| |
670 } |
| |
671 } |
| |
672 |
| |
673 // Update inertial prameters |
| |
674 let λ_prev = λ; |
| |
675 λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); |
| |
676 let θ = λ / λ_prev - λ; |
| |
677 |
| |
678 // Perform inertial update on μ. |
| |
679 // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ |
| |
680 // and μ_prev have zero weight. Since both have weights from the finite-dimensional |
| |
681 // subproblem with a proximal projection step, this is likely to happen when the |
| |
682 // spike is not needed. A copy of the pruned μ without artithmetic performed is |
| |
683 // stored in μ_prev. |
| |
684 let n_before_prune = μ.len(); |
| |
685 μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); |
| |
686 debug_assert!(μ.len() <= n_before_prune); |
| |
687 stats.pruned += n_before_prune - μ.len(); |
| |
688 |
| |
689 // Update residual |
| |
690 residual = calculate_residual(&μ, opA, b); |
| |
691 |
| |
692 // Update main tolerance for next iteration |
| |
693 let ε_prev = ε; |
| |
694 ε = tolerance.update(ε, state.iteration()); |
| |
695 stats.this_iters += 1; |
| |
696 |
| |
697 // Give function value if needed |
| |
698 state.if_verbose(|| { |
| |
699 // Plot if so requested |
| |
700 plotter.plot_spikes( |
| |
701 format!("iter {} end; {}", state.iteration(), within_tolerances), &d, |
| |
702 "start".to_string(), Some(&minus_τv), |
| |
703 reg.target_bounds(τ, ε_prev), &μ_prev, |
| |
704 ); |
| |
705 // Calculate mean inner iterations and reset relevant counters. |
| |
706 // Return the statistics |
| |
707 let res = IterInfo { |
| |
708 value : L2Squared.calculate_fit_op(&μ_prev, opA, b) + reg.apply(&μ_prev), |
| |
709 n_spikes : μ_prev.len(), |
| |
710 ε : ε_prev, |
| |
711 postprocessing: config.postprocessing.then(|| μ_prev.clone()), |
| |
712 .. stats |
| |
713 }; |
| |
714 stats = IterInfo::new(); |
| |
715 res |
| |
716 }) |
| |
717 }); |
| |
718 |
| |
719 postprocess(μ_prev, config, L2Squared, opA, b) |
| |
720 } |