Mon, 06 Jan 2025 11:32:57 -0500
Factor fix
35 | 1 | //! Implementation of the linear function |
2 | ||
3 | use numeric_literals::replace_float_literals; | |
4 | use serde::Serialize; | |
5 | use alg_tools::types::*; | |
6 | use alg_tools::norms::*; | |
7 | use alg_tools::loc::Loc; | |
8 | use alg_tools::sets::Cube; | |
9 | use alg_tools::bisection_tree::{ | |
10 | Support, | |
11 | Bounds, | |
12 | LocalAnalysis, | |
13 | GlobalAnalysis, | |
14 | Bounded, | |
15 | }; | |
16 | use alg_tools::mapping::{Mapping, Instance}; | |
17 | use alg_tools::maputil::array_init; | |
18 | use alg_tools::euclidean::Euclidean; | |
19 | ||
20 | /// Representation of the hat function $f(x)=1-\\|x\\|\_1/ε$ of `width` $ε$ on $ℝ^N$. | |
21 | #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] | |
22 | pub struct Linear<F : Float, const N : usize> { | |
23 | /// The parameter $ε>0$. | |
24 | pub v : Loc<F, N>, | |
25 | } | |
26 | ||
27 | #[replace_float_literals(F::cast_from(literal))] | |
28 | impl<F : Float, const N : usize> Mapping<Loc<F, N>> for Linear<F, N> { | |
29 | type Codomain = F; | |
30 | ||
31 | #[inline] | |
32 | fn apply<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Codomain { | |
33 | x.eval(|x| self.v.dot(x)) | |
34 | } | |
35 | } | |
36 | ||
37 | ||
38 | #[replace_float_literals(F::cast_from(literal))] | |
39 | impl<'a, F : Float, const N : usize> Support<F, N> for Linear<F, N> { | |
40 | #[inline] | |
41 | fn support_hint(&self) -> Cube<F,N> { | |
42 | array_init(|| [F::NEG_INFINITY, F::INFINITY]).into() | |
43 | } | |
44 | ||
45 | #[inline] | |
46 | fn in_support(&self, _x : &Loc<F,N>) -> bool { | |
47 | true | |
48 | } | |
49 | ||
50 | /*fn fully_in_support(&self, _cube : &Cube<F,N>) -> bool { | |
51 | todo!("Not implemented, but not used at the moment") | |
52 | }*/ | |
53 | ||
54 | #[inline] | |
55 | fn bisection_hint(&self, _cube : &Cube<F,N>) -> [Option<F>; N] { | |
56 | [None; N] | |
57 | } | |
58 | } | |
59 | ||
60 | ||
61 | #[replace_float_literals(F::cast_from(literal))] | |
62 | impl<'a, F : Float, const N : usize> | |
63 | GlobalAnalysis<F, Bounds<F>> | |
64 | for Linear<F, N> { | |
65 | #[inline] | |
66 | fn global_analysis(&self) -> Bounds<F> { | |
67 | Bounds(F::NEG_INFINITY, F::INFINITY) | |
68 | } | |
69 | } | |
70 | ||
71 | impl<'a, F : Float, const N : usize> | |
72 | LocalAnalysis<F, Bounds<F>, N> | |
73 | for Linear<F, N> { | |
74 | #[inline] | |
75 | fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { | |
76 | let (lower, upper) = cube.iter_corners() | |
77 | .map(|x| self.apply(x)) | |
78 | .fold((F::INFINITY, F::NEG_INFINITY), |(lower, upper), v| { | |
79 | (lower.min(v), upper.max(v)) | |
80 | }); | |
81 | Bounds(lower, upper) | |
82 | } | |
83 | } | |
84 | ||
85 | #[replace_float_literals(F::cast_from(literal))] | |
86 | impl<'a, F : Float, const N : usize> | |
87 | Norm<F, Linfinity> | |
88 | for Linear<F, N> { | |
89 | #[inline] | |
90 | fn norm(&self, _ : Linfinity) -> F { | |
91 | self.bounds().upper() | |
92 | } | |
93 | } | |
94 |