Thu, 23 Jan 2025 23:35:28 +0100
Generic proximal penalty support
0 | 1 | /*! |
2 | Forward models from discrete measures to observations. | |
3 | */ | |
4 | ||
5 | pub use alg_tools::linops::*; | |
6 | use alg_tools::euclidean::Euclidean; | |
7 | use alg_tools::error::DynError; | |
35 | 8 | use alg_tools::instance::Instance; |
9 | use alg_tools::norms::{NormExponent, L2, Norm}; | |
0 | 10 | |
11 | use crate::types::*; | |
35 | 12 | use crate::measures::Radon; |
13 | pub mod sensor_grid; | |
14 | pub mod bias; | |
0 | 15 | |
16 | /// `ForwardeModel`s are bounded preadjointable linear operators $A ∈ 𝕃(𝒵(Ω); E)$ | |
17 | /// where $𝒵(Ω) ⊂ ℳ(Ω)$ is the space of sums of delta measures, presented by | |
35 | 18 | /// [`crate::measures::DiscreteMeasure`], and $E$ is a [`Euclidean`] space. |
19 | pub trait ForwardModel<Domain : Space, F : Float = f64, E : NormExponent = Radon> | |
20 | : BoundedLinear<Domain, E, L2, F, Codomain=Self::Observable> | |
21 | + GEMV<F, Domain, Self::Observable> | |
22 | + Preadjointable<Domain, Self::Observable> | |
23 | where | |
24 | for<'a> Self::Observable : Instance<Self::Observable>, | |
25 | Domain : Norm<F, E>, | |
26 | { | |
0 | 27 | /// The codomain or value space (of “observables”) for this operator. |
28 | /// It is assumed to be a [`Euclidean`] space, and therefore also (identified with) | |
29 | /// the domain of the preadjoint. | |
30 | type Observable : Euclidean<F, Output=Self::Observable> | |
31 | + AXPY<F> | |
35 | 32 | + Space |
0 | 33 | + Clone; |
34 | ||
35 | /// Write an observable into a file. | |
36 | fn write_observable(&self, b : &Self::Observable, prefix : String) -> DynError; | |
37 | ||
38 | /// Returns a zero observable | |
39 | fn zero_observable(&self) -> Self::Observable; | |
40 | } | |
41 | ||
35 | 42 | /// Trait for operators $A$ for which $A_*A$ is bounded by some other operator. |
43 | pub trait AdjointProductBoundedBy<Domain : Space, D> : Linear<Domain> { | |
44 | type FloatType : Float; | |
45 | /// Return $L$ such that $A_*A ≤ LD$. | |
46 | fn adjoint_product_bound(&self, other : &D) -> Option<Self::FloatType>; | |
0 | 47 | } |
48 | ||
35 | 49 | /// Trait for operators $A$ for which $A_*A$ is bounded by a diagonal operator. |
50 | pub trait AdjointProductPairBoundedBy<Domain : Space, D1, D2> : Linear<Domain> { | |
51 | type FloatType : Float; | |
52 | /// Return $(L, L_z)$ such that $A_*A ≤ (L_1 D_1, L_2 D_2)$. | |
53 | fn adjoint_product_pair_bound(&self, other1 : &D1, other_2 : &D2) | |
54 | -> Option<(Self::FloatType, Self::FloatType)>; | |
0 | 55 | } |
56 | ||
35 | 57 | /// Trait for [`ForwardModel`]s whose preadjoint has Lipschitz values. |
58 | pub trait LipschitzValues { | |
59 | type FloatType : Float; | |
60 | /// Return (if one exists) a factor $L$ such that $A_*z$ is $L$-Lipschitz for all | |
61 | /// $z$ in the unit ball. | |
62 | fn value_unit_lipschitz_factor(&self) -> Option<Self::FloatType> { | |
63 | None | |
0 | 64 | } |
65 | ||
35 | 66 | /// Return (if one exists) a factor $L$ such that $∇A_*z$ is $L$-Lipschitz for all |
67 | /// $z$ in the unit ball. | |
68 | fn value_diff_unit_lipschitz_factor(&self) -> Option<Self::FloatType> { | |
69 | None | |
0 | 70 | } |
71 | } | |
72 |