Mon, 17 Feb 2025 14:10:45 -0500
Add macros to katex-header.
0 | 1 | |
2 | //! Implementation of the indicator function of a ball with respect to various norms. | |
35 | 3 | use float_extras::f64::tgamma as gamma; |
0 | 4 | use numeric_literals::replace_float_literals; |
5 | use serde::Serialize; | |
6 | use alg_tools::types::*; | |
7 | use alg_tools::norms::*; | |
8 | use alg_tools::loc::Loc; | |
9 | use alg_tools::sets::Cube; | |
10 | use alg_tools::bisection_tree::{ | |
11 | Support, | |
12 | Constant, | |
13 | Bounds, | |
14 | LocalAnalysis, | |
15 | GlobalAnalysis, | |
16 | }; | |
35 | 17 | use alg_tools::mapping::{ |
18 | Mapping, | |
19 | Differential, | |
20 | DifferentiableImpl, | |
21 | }; | |
22 | use alg_tools::instance::Instance; | |
23 | use alg_tools::euclidean::StaticEuclidean; | |
0 | 24 | use alg_tools::maputil::array_init; |
25 | use alg_tools::coefficients::factorial; | |
35 | 26 | use crate::types::*; |
0 | 27 | use super::base::*; |
28 | ||
29 | /// Representation of the indicator of the ball $𝔹_q = \\{ x ∈ ℝ^N \mid \\|x\\|\_q ≤ r \\}$, | |
30 | /// where $q$ is the `Exponent`, and $r$ is the radius [`Constant`] `C`. | |
31 | #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] | |
32 | pub struct BallIndicator<C : Constant, Exponent : NormExponent, const N : usize> { | |
33 | /// The radius of the ball. | |
34 | pub r : C, | |
35 | /// The exponent $q$ of the norm creating the ball | |
36 | pub exponent : Exponent, | |
37 | } | |
38 | ||
39 | /// Alias for the representation of the indicator of the $∞$-norm-ball | |
40 | /// $𝔹_∞ = \\{ x ∈ ℝ^N \mid \\|x\\|\_∞ ≤ c \\}$. | |
41 | pub type CubeIndicator<C, const N : usize> = BallIndicator<C, Linfinity, N>; | |
42 | ||
43 | #[replace_float_literals(C::Type::cast_from(literal))] | |
44 | impl<'a, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
35 | 45 | Mapping<Loc<C::Type, N>> |
0 | 46 | for BallIndicator<C, Exponent, N> |
35 | 47 | where |
48 | Loc<F, N> : Norm<F, Exponent> | |
49 | { | |
50 | type Codomain = C::Type; | |
51 | ||
0 | 52 | #[inline] |
35 | 53 | fn apply<I : Instance<Loc<C::Type, N>>>(&self, x : I) -> Self::Codomain { |
0 | 54 | let r = self.r.value(); |
35 | 55 | let n = x.eval(|x| x.norm(self.exponent)); |
0 | 56 | if n <= r { |
57 | 1.0 | |
58 | } else { | |
59 | 0.0 | |
60 | } | |
61 | } | |
62 | } | |
63 | ||
35 | 64 | impl<'a, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> |
65 | DifferentiableImpl<Loc<C::Type, N>> | |
66 | for BallIndicator<C, Exponent, N> | |
67 | where | |
68 | C : Constant, | |
69 | Loc<F, N> : Norm<F, Exponent> | |
70 | { | |
71 | type Derivative = Loc<C::Type, N>; | |
72 | ||
73 | #[inline] | |
74 | fn differential_impl<I : Instance<Loc<C::Type, N>>>(&self, _x : I) -> Self::Derivative { | |
75 | Self::Derivative::origin() | |
76 | } | |
77 | } | |
78 | ||
0 | 79 | impl<F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> |
35 | 80 | Lipschitz<L2> |
0 | 81 | for BallIndicator<C, Exponent, N> |
35 | 82 | where C : Constant, |
83 | Loc<F, N> : Norm<F, Exponent> { | |
84 | type FloatType = C::Type; | |
85 | ||
86 | fn lipschitz_factor(&self, _l2 : L2) -> Option<C::Type> { | |
87 | None | |
88 | } | |
89 | } | |
90 | ||
91 | impl<'b, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
92 | Lipschitz<L2> | |
93 | for Differential<'b, Loc<F, N>, BallIndicator<C, Exponent, N>> | |
94 | where C : Constant, | |
95 | Loc<F, N> : Norm<F, Exponent> { | |
96 | type FloatType = C::Type; | |
97 | ||
98 | fn lipschitz_factor(&self, _l2 : L2) -> Option<C::Type> { | |
99 | None | |
100 | } | |
101 | } | |
102 | ||
103 | impl<'a, 'b, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
104 | Lipschitz<L2> | |
105 | for Differential<'b, Loc<F, N>, &'a BallIndicator<C, Exponent, N>> | |
106 | where C : Constant, | |
107 | Loc<F, N> : Norm<F, Exponent> { | |
108 | type FloatType = C::Type; | |
109 | ||
110 | fn lipschitz_factor(&self, _l2 : L2) -> Option<C::Type> { | |
111 | None | |
112 | } | |
113 | } | |
114 | ||
115 | ||
116 | impl<'b, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
117 | NormBounded<L2> | |
118 | for Differential<'b, Loc<F, N>, BallIndicator<C, Exponent, N>> | |
119 | where C : Constant, | |
120 | Loc<F, N> : Norm<F, Exponent> { | |
121 | type FloatType = C::Type; | |
122 | ||
123 | fn norm_bound(&self, _l2 : L2) -> C::Type { | |
124 | F::INFINITY | |
125 | } | |
126 | } | |
127 | ||
128 | impl<'a, 'b, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
129 | NormBounded<L2> | |
130 | for Differential<'b, Loc<F, N>, &'a BallIndicator<C, Exponent, N>> | |
131 | where C : Constant, | |
132 | Loc<F, N> : Norm<F, Exponent> { | |
133 | type FloatType = C::Type; | |
134 | ||
135 | fn norm_bound(&self, _l2 : L2) -> C::Type { | |
136 | F::INFINITY | |
0 | 137 | } |
138 | } | |
139 | ||
140 | ||
141 | impl<'a, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
142 | Support<C::Type, N> | |
143 | for BallIndicator<C, Exponent, N> | |
144 | where Loc<F, N> : Norm<F, Exponent>, | |
145 | Linfinity : Dominated<F, Exponent, Loc<F, N>> { | |
146 | ||
147 | #[inline] | |
148 | fn support_hint(&self) -> Cube<F,N> { | |
149 | let r = Linfinity.from_norm(self.r.value(), self.exponent); | |
150 | array_init(|| [-r, r]).into() | |
151 | } | |
152 | ||
153 | #[inline] | |
154 | fn in_support(&self, x : &Loc<F,N>) -> bool { | |
155 | let r = Linfinity.from_norm(self.r.value(), self.exponent); | |
156 | x.norm(self.exponent) <= r | |
157 | } | |
158 | ||
159 | /// This can only really work in a reasonable fashion for N=1. | |
160 | #[inline] | |
161 | fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { | |
162 | let r = Linfinity.from_norm(self.r.value(), self.exponent); | |
163 | cube.map(|a, b| symmetric_interval_hint(r, a, b)) | |
164 | } | |
165 | } | |
166 | ||
167 | #[replace_float_literals(F::cast_from(literal))] | |
168 | impl<'a, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
169 | GlobalAnalysis<F, Bounds<F>> | |
170 | for BallIndicator<C, Exponent, N> | |
171 | where Loc<F, N> : Norm<F, Exponent> { | |
172 | #[inline] | |
173 | fn global_analysis(&self) -> Bounds<F> { | |
174 | Bounds(0.0, 1.0) | |
175 | } | |
176 | } | |
177 | ||
178 | #[replace_float_literals(F::cast_from(literal))] | |
179 | impl<'a, F : Float, C : Constant<Type=F>, Exponent : NormExponent, const N : usize> | |
180 | Norm<F, Linfinity> | |
181 | for BallIndicator<C, Exponent, N> | |
182 | where Loc<F, N> : Norm<F, Exponent> { | |
183 | #[inline] | |
184 | fn norm(&self, _ : Linfinity) -> F { | |
185 | 1.0 | |
186 | } | |
187 | } | |
188 | ||
189 | #[replace_float_literals(F::cast_from(literal))] | |
190 | impl<'a, F : Float, C : Constant<Type=F>, const N : usize> | |
191 | Norm<F, L1> | |
192 | for BallIndicator<C, L1, N> { | |
193 | #[inline] | |
194 | fn norm(&self, _ : L1) -> F { | |
195 | // Using https://en.wikipedia.org/wiki/Volume_of_an_n-ball#Balls_in_Lp_norms, | |
196 | // we have V_N^1(r) = (2r)^N / N! | |
197 | let r = self.r.value(); | |
198 | if N==1 { | |
199 | 2.0 * r | |
200 | } else if N==2 { | |
201 | r*r | |
202 | } else { | |
203 | (2.0 * r).powi(N as i32) * F::cast_from(factorial(N)) | |
204 | } | |
205 | } | |
206 | } | |
207 | ||
208 | #[replace_float_literals(F::cast_from(literal))] | |
209 | impl<'a, F : Float, C : Constant<Type=F>, const N : usize> | |
210 | Norm<F, L1> | |
211 | for BallIndicator<C, L2, N> { | |
212 | #[inline] | |
213 | fn norm(&self, _ : L1) -> F { | |
214 | // See https://en.wikipedia.org/wiki/Volume_of_an_n-ball#The_volume. | |
215 | let r = self.r.value(); | |
216 | let π = F::PI; | |
217 | if N==1 { | |
218 | 2.0 * r | |
219 | } else if N==2 { | |
220 | π * (r * r) | |
221 | } else { | |
222 | let ndiv2 = F::cast_from(N) / 2.0; | |
223 | let γ = F::cast_from(gamma((ndiv2 + 1.0).as_())); | |
224 | π.powf(ndiv2) / γ * r.powi(N as i32) | |
225 | } | |
226 | } | |
227 | } | |
228 | ||
229 | #[replace_float_literals(F::cast_from(literal))] | |
230 | impl<'a, F : Float, C : Constant<Type=F>, const N : usize> | |
231 | Norm<F, L1> | |
232 | for BallIndicator<C, Linfinity, N> { | |
233 | #[inline] | |
234 | fn norm(&self, _ : L1) -> F { | |
235 | let two_r = 2.0 * self.r.value(); | |
236 | two_r.powi(N as i32) | |
237 | } | |
238 | } | |
239 | ||
240 | ||
241 | macro_rules! indicator_local_analysis { | |
242 | ($exponent:ident) => { | |
243 | impl<'a, F : Float, C : Constant<Type=F>, const N : usize> | |
244 | LocalAnalysis<F, Bounds<F>, N> | |
245 | for BallIndicator<C, $exponent, N> | |
246 | where Loc<F, N> : Norm<F, $exponent>, | |
247 | Linfinity : Dominated<F, $exponent, Loc<F, N>> { | |
248 | #[inline] | |
249 | fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { | |
250 | // The function is maximised/minimised where the 2-norm is minimised/maximised. | |
251 | let lower = self.apply(cube.maxnorm_point()); | |
252 | let upper = self.apply(cube.minnorm_point()); | |
253 | Bounds(lower, upper) | |
254 | } | |
255 | } | |
256 | } | |
257 | } | |
258 | ||
259 | indicator_local_analysis!(L1); | |
260 | indicator_local_analysis!(L2); | |
261 | indicator_local_analysis!(Linfinity); | |
262 | ||
263 | ||
264 | #[replace_float_literals(F::cast_from(literal))] | |
35 | 265 | impl<'a, F : Float, R, const N : usize> Mapping<Loc<F, N>> |
0 | 266 | for AutoConvolution<CubeIndicator<R, N>> |
267 | where R : Constant<Type=F> { | |
35 | 268 | type Codomain = F; |
0 | 269 | |
270 | #[inline] | |
35 | 271 | fn apply<I : Instance<Loc<F, N>>>(&self, y : I) -> F { |
0 | 272 | let two_r = 2.0 * self.0.r.value(); |
273 | // This is just a product of one-dimensional versions | |
35 | 274 | y.cow().iter().map(|&x| { |
0 | 275 | 0.0.max(two_r - x.abs()) |
276 | }).product() | |
277 | } | |
278 | } | |
279 | ||
280 | #[replace_float_literals(F::cast_from(literal))] | |
281 | impl<F : Float, R, const N : usize> Support<F, N> | |
282 | for AutoConvolution<CubeIndicator<R, N>> | |
283 | where R : Constant<Type=F> { | |
284 | #[inline] | |
285 | fn support_hint(&self) -> Cube<F, N> { | |
286 | let two_r = 2.0 * self.0.r.value(); | |
287 | array_init(|| [-two_r, two_r]).into() | |
288 | } | |
289 | ||
290 | #[inline] | |
291 | fn in_support(&self, y : &Loc<F, N>) -> bool { | |
292 | let two_r = 2.0 * self.0.r.value(); | |
293 | y.iter().all(|x| x.abs() <= two_r) | |
294 | } | |
295 | ||
296 | #[inline] | |
297 | fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { | |
298 | let two_r = 2.0 * self.0.r.value(); | |
299 | cube.map(|c, d| symmetric_interval_hint(two_r, c, d)) | |
300 | } | |
301 | } | |
302 | ||
303 | #[replace_float_literals(F::cast_from(literal))] | |
304 | impl<F : Float, R, const N : usize> GlobalAnalysis<F, Bounds<F>> | |
305 | for AutoConvolution<CubeIndicator<R, N>> | |
306 | where R : Constant<Type=F> { | |
307 | #[inline] | |
308 | fn global_analysis(&self) -> Bounds<F> { | |
309 | Bounds(0.0, self.apply(Loc::ORIGIN)) | |
310 | } | |
311 | } | |
312 | ||
313 | impl<F : Float, R, const N : usize> LocalAnalysis<F, Bounds<F>, N> | |
314 | for AutoConvolution<CubeIndicator<R, N>> | |
315 | where R : Constant<Type=F> { | |
316 | #[inline] | |
317 | fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { | |
318 | // The function is maximised/minimised where the absolute value is minimised/maximised. | |
319 | let lower = self.apply(cube.maxnorm_point()); | |
320 | let upper = self.apply(cube.minnorm_point()); | |
321 | Bounds(lower, upper) | |
322 | } | |
323 | } |