Fri, 02 Dec 2022 21:20:04 +0200
Command line parameter passing simplifications and make `-o` required.
Remove separate Configuration, using CommandLineArgs directly.
| 0 | 1 | /*! |
| 2 | Experimental setups. | |
| 3 | */ | |
| 4 | ||
| 5 | //use numeric_literals::replace_float_literals; | |
| 6 | use serde::{Serialize, Deserialize}; | |
| 7 | use clap::ValueEnum; | |
| 8 | use std::collections::HashMap; | |
| 9 | use std::hash::{Hash, Hasher}; | |
| 10 | use std::collections::hash_map::DefaultHasher; | |
| 11 | ||
| 12 | use alg_tools::bisection_tree::*; | |
| 13 | use alg_tools::error::DynResult; | |
| 14 | use alg_tools::norms::Linfinity; | |
| 15 | ||
| 16 | use crate::ExperimentOverrides; | |
| 17 | use crate::kernels::*; | |
| 18 | use crate::kernels::{SupportProductFirst as Prod}; | |
| 19 | use crate::pdps::PDPSConfig; | |
| 20 | use crate::types::*; | |
| 21 | use crate::run::{ | |
| 22 | RunnableExperiment, | |
| 23 | Experiment, | |
| 24 | Named, | |
| 25 | DefaultAlgorithm, | |
| 26 | AlgorithmConfig | |
| 27 | }; | |
| 28 | //use crate::fb::FBGenericConfig; | |
| 29 | use crate::rand_distr::{SerializableNormal, SaltAndPepper}; | |
| 30 | ||
| 31 | /// Experiments shorthands, to be used with the command line parser | |
| 32 | ||
| 33 | #[derive(ValueEnum, Debug, Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)] | |
| 34 | #[allow(non_camel_case_types)] | |
| 35 | pub enum DefaultExperiment { | |
| 36 | /// One dimension, cut gaussian spread, 2-norm-squared data fidelity | |
| 37 | #[clap(name = "1d")] | |
| 38 | Experiment1D, | |
| 39 | /// One dimension, “fast” spread, 2-norm-squared data fidelity | |
| 40 | #[clap(name = "1d_fast")] | |
| 41 | Experiment1DFast, | |
| 42 | /// Two dimensions, cut gaussian spread, 2-norm-squared data fidelity | |
| 43 | #[clap(name = "2d")] | |
| 44 | Experiment2D, | |
| 45 | /// Two dimensions, “fast” spread, 2-norm-squared data fidelity | |
| 46 | #[clap(name = "2d_fast")] | |
| 47 | Experiment2DFast, | |
| 48 | /// One dimension, cut gaussian spread, 1-norm data fidelity | |
| 49 | #[clap(name = "1d_l1")] | |
| 50 | Experiment1D_L1, | |
| 51 | /// One dimension, ‘“fast” spread, 1-norm data fidelity | |
| 52 | #[clap(name = "1d_l1_fast")] | |
| 53 | Experiment1D_L1_Fast, | |
| 54 | /// Two dimensions, cut gaussian spread, 1-norm data fidelity | |
| 55 | #[clap(name = "2d_l1")] | |
| 56 | Experiment2D_L1, | |
| 57 | /// Two dimensions, “fast” spread, 1-norm data fidelity | |
| 58 | #[clap(name = "2d_l1_fast")] | |
| 59 | Experiment2D_L1_Fast, | |
| 60 | } | |
| 61 | ||
| 62 | macro_rules! make_float_constant { | |
| 63 | ($name:ident = $value:expr) => { | |
| 64 | #[derive(Debug, Copy, Eq, PartialEq, Clone, Serialize, Deserialize)] | |
| 65 | #[serde(into = "float")] | |
| 66 | struct $name; | |
| 67 | impl Into<float> for $name { | |
| 68 | #[inline] | |
| 69 | fn into(self) -> float { $value } | |
| 70 | } | |
| 71 | impl Constant for $name { | |
| 72 | type Type = float; | |
| 73 | fn value(&self) -> float { $value } | |
| 74 | } | |
| 75 | } | |
| 76 | } | |
| 77 | ||
| 78 | /// Ground-truth measure spike locations and magnitudes for 1D experiments | |
| 79 | static MU_TRUE_1D_BASIC : [(float, float); 4] = [ | |
| 80 | (0.10, 10.0), | |
| 81 | (0.30, 2.0), | |
| 82 | (0.70, 3.0), | |
| 83 | (0.80, 5.0) | |
| 84 | ]; | |
| 85 | ||
| 86 | /// Ground-truth measure spike locations and magnitudes for 2D experiments | |
| 87 | static MU_TRUE_2D_BASIC : [([float; 2], float); 4] = [ | |
| 88 | ([0.15, 0.15], 10.0), | |
| 89 | ([0.75, 0.45], 2.0), | |
| 90 | ([0.80, 0.50], 4.0), | |
| 91 | ([0.30, 0.70], 5.0) | |
| 92 | ]; | |
| 93 | ||
| 94 | //#[replace_float_literals(F::cast_from(literal))] | |
| 95 | impl DefaultExperiment { | |
| 96 | /// Convert the experiment shorthand into a runnable experiment configuration. | |
| 97 | pub fn get_experiment(&self, cli : &ExperimentOverrides<float>) -> DynResult<Box<dyn RunnableExperiment<float>>> { | |
| 98 | let name = "pointsource".to_string() | |
| 99 | + self.to_possible_value().unwrap().get_name(); | |
| 100 | ||
| 101 | let kernel_plot_width = 0.2; | |
| 102 | ||
| 103 | const BASE_SEED : u64 = 915373234; | |
| 104 | ||
| 105 | const N_SENSORS_1D : usize = 100; | |
| 106 | make_float_constant!(SensorWidth1D = 0.4/(N_SENSORS_1D as float)); | |
| 107 | ||
| 108 | const N_SENSORS_2D : usize = 16; | |
| 109 | make_float_constant!(SensorWidth2D = 0.4/(N_SENSORS_2D as float)); | |
| 110 | ||
| 111 | const N_SENSORS_2D_MORE : usize = 32; | |
| 112 | make_float_constant!(SensorWidth2DMore = 0.4/(N_SENSORS_2D_MORE as float)); | |
| 113 | ||
| 114 | make_float_constant!(Variance1 = 0.05.powi(2)); | |
| 115 | make_float_constant!(CutOff1 = 0.15); | |
| 116 | make_float_constant!(Hat1 = 0.16); | |
| 117 | ||
| 118 | // We use a different step length for PDPS in 2D experiments | |
| 119 | let pdps_2d = || { | |
| 120 | let τ0 = 3.0; | |
| 121 | PDPSConfig { | |
| 122 | τ0, | |
| 123 | σ0 : 0.99 / τ0, | |
| 124 | .. Default::default() | |
| 125 | } | |
| 126 | }; | |
| 127 | ||
| 128 | // We add a hash of the experiment name to the configured | |
| 129 | // noise seed to not use the same noise for different experiments. | |
| 130 | let mut h = DefaultHasher::new(); | |
| 131 | name.hash(&mut h); | |
| 132 | let noise_seed = cli.noise_seed.unwrap_or(BASE_SEED) + h.finish(); | |
| 133 | ||
| 134 | use DefaultExperiment::*; | |
| 135 | Ok(match self { | |
| 136 | Experiment1D => { | |
| 137 | let base_spread = Gaussian { variance : Variance1 }; | |
| 138 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
| 139 | Box::new(Named { name, data : Experiment { | |
| 140 | domain : [[0.0, 1.0]].into(), | |
| 141 | sensor_count : [N_SENSORS_1D], | |
| 142 | α : cli.alpha.unwrap_or(0.09), | |
| 143 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.2))?, | |
| 144 | dataterm : DataTerm::L2Squared, | |
| 145 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
| 146 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
| 147 | spread : Prod(spread_cutoff, base_spread), | |
| 148 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
| 149 | kernel_plot_width, | |
| 150 | noise_seed, | |
| 151 | algorithm_defaults: HashMap::new(), | |
| 152 | }}) | |
| 153 | }, | |
| 154 | Experiment1DFast => { | |
| 155 | let base_spread = HatConv { radius : Hat1 }; | |
| 156 | Box::new(Named { name, data : Experiment { | |
| 157 | domain : [[0.0, 1.0]].into(), | |
| 158 | sensor_count : [N_SENSORS_1D], | |
| 159 | α : cli.alpha.unwrap_or(0.06), | |
| 160 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.2))?, | |
| 161 | dataterm : DataTerm::L2Squared, | |
| 162 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
| 163 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
| 164 | spread : base_spread, | |
| 165 | kernel : base_spread, | |
| 166 | kernel_plot_width, | |
| 167 | noise_seed, | |
| 168 | algorithm_defaults: HashMap::new(), | |
| 169 | }}) | |
| 170 | }, | |
| 171 | Experiment2D => { | |
| 172 | let base_spread = Gaussian { variance : Variance1 }; | |
| 173 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
| 174 | Box::new(Named { name, data : Experiment { | |
| 175 | domain : [[0.0, 1.0]; 2].into(), | |
| 176 | sensor_count : [N_SENSORS_2D; 2], | |
| 177 | α : cli.alpha.unwrap_or(0.19), // 0.18, //0.17, //0.16, | |
| 178 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.25))?, | |
| 179 | dataterm : DataTerm::L2Squared, | |
| 180 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
| 181 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
| 182 | spread : Prod(spread_cutoff, base_spread), | |
| 183 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
| 184 | kernel_plot_width, | |
| 185 | noise_seed, | |
| 186 | algorithm_defaults: HashMap::from([ | |
| 187 | (DefaultAlgorithm::PDPS, AlgorithmConfig::PDPS(pdps_2d())) | |
| 188 | ]), | |
| 189 | }}) | |
| 190 | }, | |
| 191 | Experiment2DFast => { | |
| 192 | let base_spread = HatConv { radius : Hat1 }; | |
| 193 | Box::new(Named { name, data : Experiment { | |
| 194 | domain : [[0.0, 1.0]; 2].into(), | |
| 195 | sensor_count : [N_SENSORS_2D; 2], | |
| 196 | α : cli.alpha.unwrap_or(0.12), //0.10, //0.14, | |
| 197 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.15))?, //0.25 | |
| 198 | dataterm : DataTerm::L2Squared, | |
| 199 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
| 200 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
| 201 | spread : base_spread, | |
| 202 | kernel : base_spread, | |
| 203 | kernel_plot_width, | |
| 204 | noise_seed, | |
| 205 | algorithm_defaults: HashMap::from([ | |
| 206 | (DefaultAlgorithm::PDPS, AlgorithmConfig::PDPS(pdps_2d())) | |
| 207 | ]), | |
| 208 | }}) | |
| 209 | }, | |
| 210 | Experiment1D_L1 => { | |
| 211 | let base_spread = Gaussian { variance : Variance1 }; | |
| 212 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
| 213 | Box::new(Named { name, data : Experiment { | |
| 214 | domain : [[0.0, 1.0]].into(), | |
| 215 | sensor_count : [N_SENSORS_1D], | |
| 216 | α : cli.alpha.unwrap_or(0.1), | |
| 217 | noise_distr : SaltAndPepper::new( | |
| 218 | cli.salt_and_pepper.as_ref().map_or(0.6, |v| v[0]), | |
| 219 | cli.salt_and_pepper.as_ref().map_or(0.4, |v| v[1]) | |
| 220 | )?, | |
| 221 | dataterm : DataTerm::L1, | |
| 222 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
| 223 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
| 224 | spread : Prod(spread_cutoff, base_spread), | |
| 225 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
| 226 | kernel_plot_width, | |
| 227 | noise_seed, | |
| 228 | algorithm_defaults: HashMap::new(), | |
| 229 | }}) | |
| 230 | }, | |
| 231 | Experiment1D_L1_Fast => { | |
| 232 | let base_spread = HatConv { radius : Hat1 }; | |
| 233 | Box::new(Named { name, data : Experiment { | |
| 234 | domain : [[0.0, 1.0]].into(), | |
| 235 | sensor_count : [N_SENSORS_1D], | |
| 236 | α : cli.alpha.unwrap_or(0.12), | |
| 237 | noise_distr : SaltAndPepper::new( | |
| 238 | cli.salt_and_pepper.as_ref().map_or(0.6, |v| v[0]), | |
| 239 | cli.salt_and_pepper.as_ref().map_or(0.4, |v| v[1]) | |
| 240 | )?, | |
| 241 | dataterm : DataTerm::L1, | |
| 242 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
| 243 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
| 244 | spread : base_spread, | |
| 245 | kernel : base_spread, | |
| 246 | kernel_plot_width, | |
| 247 | noise_seed, | |
| 248 | algorithm_defaults: HashMap::new(), | |
| 249 | }}) | |
| 250 | }, | |
| 251 | Experiment2D_L1 => { | |
| 252 | let base_spread = Gaussian { variance : Variance1 }; | |
| 253 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
| 254 | Box::new(Named { name, data : Experiment { | |
| 255 | domain : [[0.0, 1.0]; 2].into(), | |
| 256 | sensor_count : [N_SENSORS_2D; 2], | |
| 257 | α : cli.alpha.unwrap_or(0.35), | |
| 258 | noise_distr : SaltAndPepper::new( | |
| 259 | cli.salt_and_pepper.as_ref().map_or(0.8, |v| v[0]), | |
| 260 | cli.salt_and_pepper.as_ref().map_or(0.2, |v| v[1]) | |
| 261 | )?, | |
| 262 | dataterm : DataTerm::L1, | |
| 263 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
| 264 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
| 265 | spread : Prod(spread_cutoff, base_spread), | |
| 266 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
| 267 | kernel_plot_width, | |
| 268 | noise_seed, | |
| 269 | algorithm_defaults: HashMap::from([ | |
| 270 | (DefaultAlgorithm::PDPS, AlgorithmConfig::PDPS(pdps_2d())) | |
| 271 | ]), | |
| 272 | }}) | |
| 273 | }, | |
| 274 | Experiment2D_L1_Fast => { | |
| 275 | let base_spread = HatConv { radius : Hat1 }; | |
| 276 | Box::new(Named { name, data : Experiment { | |
| 277 | domain : [[0.0, 1.0]; 2].into(), | |
| 278 | sensor_count : [N_SENSORS_2D; 2], | |
| 279 | α : cli.alpha.unwrap_or(0.40), | |
| 280 | noise_distr : SaltAndPepper::new( | |
| 281 | cli.salt_and_pepper.as_ref().map_or(0.8, |v| v[0]), | |
| 282 | cli.salt_and_pepper.as_ref().map_or(0.2, |v| v[1]) | |
| 283 | )?, | |
| 284 | dataterm : DataTerm::L1, | |
| 285 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
| 286 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
| 287 | spread : base_spread, | |
| 288 | kernel : base_spread, | |
| 289 | kernel_plot_width, | |
| 290 | noise_seed, | |
| 291 | algorithm_defaults: HashMap::from([ | |
| 292 | (DefaultAlgorithm::PDPS, AlgorithmConfig::PDPS(pdps_2d())) | |
| 293 | ]), | |
| 294 | }}) | |
| 295 | }, | |
| 296 | }) | |
| 297 | } | |
| 298 | } | |
| 299 |