Fri, 06 Dec 2024 15:07:28 -0500
Rust edition = 2024
/*! Implementation of the surface of a 3D cylinder as a [`ManifoldPoint`]. */ use alg_tools::euclidean::{Euclidean, Dot}; use serde_repr::*; use serde::{Serialize, Deserialize}; use alg_tools::loc::Loc; use alg_tools::norms::{Norm, L2}; use alg_tools::types::Float; use crate::manifold::{ManifoldPoint, EmbeddedManifoldPoint, FacedManifoldPoint}; use crate::newton::{newton_sym1x1, newton_sym2x2}; /// Angle pub type Angle = f64; /// Cylindrical coordinates in ℝ^3 #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub struct CylCoords { pub r : f64, pub angle : Angle, pub z : f64 } impl CylCoords { /// Convert to cartesian coordinates. #[inline] pub fn to_cartesian(&self) -> Loc<f64, 3> { let &CylCoords{r, angle, z} = self; [r * angle.cos(), r * angle.sin(), z].into() } /// Form cylindrical coordinates from cartesian coordinates. #[inline] #[allow(dead_code)] pub fn from_cartesian(coords : Loc<f64, 3>) -> Self { let [x, y, z] = coords.into(); let r = (x*x + y*y).sqrt(); let angle = y.atan2(x); CylCoords {r, angle, z} } } /// Coordinates on a cap #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub struct CapPoint { pub r : f64, pub angle : Angle } impl CapPoint { #[inline] /// Convert to cylindrical coordinates given z coordinate fn cyl_coords(&self, z : f64) -> CylCoords { let CapPoint { r, angle } = *self; CylCoords { r, angle, z } } #[inline] /// Convert to cylindrical coordinates given z coordinate fn to_cartesian(&self) -> Loc<f64, 2> { let CapPoint { r, angle } = *self; [r * angle.cos(), r * angle.sin()].into() } #[inline] #[allow(dead_code)] /// Convert to cylindrical coordinates given z coordinate fn from_cartesian(coords : Loc<f64, 2>) -> Self { let [x, y] = coords.into(); let r = (x*x + y*y).sqrt(); let angle = normalise_angle(y.atan2(x)); CapPoint { r, angle } } #[inline] /// Calculate the vector between two points on the cap fn log(&self, other : &CapPoint) -> Loc<f64, 2> { other.to_cartesian() - self.to_cartesian() } #[inline] /// Calculate partial exponential map until boundary. /// Returns the final point within the cap as well as a remaining tangent on /// the side of the cylinder, if `t` wasn't fully used. fn partial_exp(&self, r : f64, t : &Tangent) -> (CapPoint, Option<Tangent>) { // |p + s t| <= r // |p|^2 + s^2 |t|^2 + 2s<p,t> = r^2 let p = self.to_cartesian(); let np2 = p.norm2_squared(); let nt2 = t.norm2_squared(); let r2 = r * r; let d = p.dot(t); assert!(np2 <= r2 + f64::EPSILON, "‖{p}‖ = {} > {r}", np2.sqrt()); let s = (-d + (d*d + nt2 * (r2 - np2)).sqrt()) / nt2; if s < 1.0 { (Self::from_cartesian(p + s * t), Some((1.0-s) * t)) } else { (Self::from_cartesian(p + t), None) } } #[inline] /// Convert tangent from side tangent to cap tangent fn tangent_from_side(&self, top : bool, t : Tangent) -> Tangent { if top { // The angle is such that down would be rotated to self.angle, counterclockwise // The new tangent is R[down + t] - R[down] = Rt. t.rotate(self.angle+f64::PI/2.0) } else { // The angle is such that up would be rotated to self.angle, clockwise t.reflect_y().rotate(self.angle+f64::PI/2.0) } } #[inline] /// Convert tangent from cap tangent to tangent tangent fn tangent_to_side(&self, top : bool, t : Tangent) -> Tangent { if top { // The angle is such that self.angle would be rotated to down, clockwise t.rotate(-self.angle-f64::PI/2.0) } else { // The angle is such that self.angle would be rotated to up, counterclockwise t.rotate(-self.angle-f64::PI/2.0).reflect_y() } } } /// Coordinates on a side #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub struct SidePoint { pub z : f64, pub angle : Angle } /// Calculates the difference between two angles, normalised to [–π, π]. #[inline] fn anglediff(mut φ1 : f64, mut φ2 : f64) -> f64 { let π = f64::PI; φ1 = normalise_angle(φ1); φ2 = normalise_angle(φ2); let α = φ2 - φ1; if α >= 0.0 { if α <= π { α } else { α - 2.0 * π } } else { if α >= -π { α } else { 2.0 * π + α } } } /// Normalises an angle to [0, 2π]. #[inline] pub fn normalise_angle(φ : f64) -> f64 { let π = f64::PI; φ.rem_euclid(2.0 * π) } impl SidePoint { #[inline] /// Convert to cylindrical coordinates given radius fn cyl_coords(&self, r : f64) -> CylCoords { let SidePoint { z, angle } = *self; CylCoords { r, angle, z } } #[inline] /// Calculate tangent vector between two points on the side, given radius fn log(&self, r : f64, other : &SidePoint) -> Loc<f64, 2> { let SidePoint{ z : z1, angle : angle1 } = *self; let SidePoint{ z : z2, angle : angle2 } = *other; let φ = anglediff(angle1, angle2); // TODO: is this correct? [r*φ, z2-z1].into() } #[inline] /// Calculate partial exponential map under boundary /// Returns a point on the next face, as well as a remaining tangent on /// the side of the cylinder, if `t` wasn't fully used. fn partial_exp(&self, r : f64, (a, b) : (f64, f64), t : &Tangent) -> (SidePoint, Option<Tangent>) { assert!(a <= self.z && self.z <= b); let Loc([_, h]) = *t; let s = if h > 0.0 { ((b - self.z)/h).min(1.0) } else if h < 0.0 { ((a - self.z)/h).min(1.0) } else { 1.0 }; let d = t * s; let p = self.unflatten(r, d); if s < 1.0 { (p, Some(t - d)) } else { (p, None) } } #[inline] /// Unflattens another point in the local coordinate system of self fn unflatten(&self, r : f64, Loc([v, h]) : Loc<f64, 2>) -> Self { SidePoint{ z : self.z + h, angle : normalise_angle(self.angle + v / r) } } } /// Point on some [`Cylinder`] #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub enum Point { Top(CapPoint), Bottom(CapPoint), Side(SidePoint), } /// Face on a [`Cylinder`] #[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize_repr, Deserialize_repr)] #[repr(u8)] pub enum Face { Top, Bottom, Side, } /// Point on a specific [`Cylinder`] #[derive(Clone, Debug, PartialEq)] pub struct OnCylinder<'a> { /// Face and coordinates of the point point : Point, /// The specific cylinder the `point` lies on. cylinder : &'a Cylinder, } /// Cylinder configuration #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub struct CylinderConfig { /// Number of Newton iterates two take to solve geodesics. pub newton_iters : usize, } impl Default for CylinderConfig { fn default() -> Self { CylinderConfig { newton_iters : 10 } } } /// A cylinder #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] pub struct Cylinder { /// Radius of the cylinder pub radius : f64, /// Height of the cylinder pub height : f64, /// Configuration for numerical methods pub config : CylinderConfig } impl std::fmt::Display for Face { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { use Face::*; let s = match *self { Top => "Top", Bottom => "Bottom", Side => "Side", }; write!(f, "{}", s) } } impl Point { /// Returns the face of the point fn face(&self) -> Face { match *self { Point::Top(..) => Face::Top, Point::Bottom(_) => Face::Bottom, Point::Side(_) => Face::Side, } } } impl<'a> FacedManifoldPoint for OnCylinder<'a> { type Face = Face; /// Returns the face of this point. fn face(&self) -> Face { self.point.face() } } // Tangent vector type Tangent = Loc<f64, 2>; /// Goes through list of potential tangents (corresponding to several geodesics taking /// different paths), and retuns the shortest tangent vector and the corresponding length. #[inline] fn best_tangent<I>(tangents : I) -> (Tangent, f64) where I : IntoIterator<Item = Tangent> { tangents.into_iter() .map(|t| (t, t.norm(L2))) .reduce(|a@(_, la), b@(_, lb)| if la < lb { a } else { b }) .unwrap() } /// Swap the elements of a two-tuple #[inline] fn swap<A>((a, b) : (A, A)) -> (A, A) { (b, a) } /// Indicates whether the `a` and `b` are a distance of less than [`f64::EPSILON`]. #[inline] fn indistinguishable(a : f64, b : f64) -> bool { a > b - f64::EPSILON && a < b + f64::EPSILON } impl Cylinder { /// Return the cylindrical coordinates of `point` on this cylinder fn cyl_coords(&self, point : &Point) -> CylCoords { match *point { Point::Top(cap) => { cap.cyl_coords(self.top_z()) }, Point::Bottom(cap) => { cap.cyl_coords(self.bottom_z()) }, Point::Side(side) => { side.cyl_coords(self.radius) }, } } /// Returns the z coordinate of the top (cap) of the cylinder. #[inline] pub fn top_z(&self) -> f64 { self.height / 2.0 } /// Returns the z coordinate of the bottom (cap) of the cylinder. #[inline] pub fn bottom_z(&self) -> f64 { -self.height / 2.0 } /// Find angle where a geodesic from `side` to `(cap, z)` crosses the cap edge. /// /// Uses [`newton_sym1x1`]. fn side_cap_crossing( &self, side : &SidePoint, cap : &CapPoint, z : f64, // `z` is the z coordinate of cap ) -> Angle { let &SidePoint { z : z_1, angle : φ_1 } = side; let &CapPoint { r : r_2, angle : φ_2 } = cap; assert_ne!(z, z_1); let d_1 = z - z_1; let d2_1 = d_1 * d_1; let r = self.radius; let r2 = r * r; let r2_2 = r_2 * r_2; let rr_2 = r * r_2; let g = |α_1 : f64| { let ψ = φ_2 - φ_1 - α_1; let ψ_cos = ψ.cos(); let ψ_sin = ψ.sin(); let ψ_sin2 = ψ_sin * ψ_sin; let ψ_cos2 = ψ_cos * ψ_cos; let α2_1 = α_1 * α_1; let c = d2_1 + r2 * α2_1; let e = r2 + r2_2 - 2.0 * rr_2 * ψ_cos; let g = r2 * α_1 / c.sqrt() - rr_2 * ψ_sin / e.sqrt(); let h = r2 * d2_1 / c.powf(3.0/2.0) + r * r_2 * ((r2 + r2_2) * ψ_cos - rr_2 * (ψ_sin2 - 2.0 * ψ_cos2)) / e.powf(3.0/2.0); (h, g) }; let α_1 = newton_sym1x1(g, 0.0, self.config.newton_iters); normalise_angle(φ_1 + α_1) } /// Find angles where the geodesic passing through a cap at height `z` from `side1` to `side2` /// crosses the cap edge. **Panics if `side2.angle < side1.angle`.** /// /// Uses [`newton_sym2x2`]. fn side_cap_side_crossing( &self, side1 : &SidePoint, z : f64, side2 : &SidePoint ) -> (Angle, Angle) { let &SidePoint { z : z_1, angle : φ_1 } = side1; let &SidePoint { z : z_2, angle : φ_2 } = side2; assert!(φ_2 >= φ_1); assert_ne!(z_1, z); assert_ne!(z_2, z); let r = self.radius; let r2 = r * r; let d_1 = z - z_1; let d_2 = z - z_2; let d2_1 = d_1 * d_1; let d2_2 = d_2 * d_2; let g = |α_1 : f64, α_2 : f64| { let α2_1 = α_1 * α_1; let α2_2 = α_2 * α_2; let ψ = (α_1 + α_2 + φ_1 - φ_2) / 2.0; let ψ_sin = ψ.sin(); let ψ_cos = ψ.cos(); let c_1 = d2_1 + r2 * α2_1; let c_2 = d2_2 + r2 * α2_2; let g_1 = r2 * α_1 / c_1.sqrt() - r * ψ_cos; let g_2 = r2 * α_2 / c_2.sqrt() - r * ψ_cos; let h_12 = (r / 2.0) * ψ_sin; let h_11 = r2 * d2_1 / c_1.powf(3.0 / 2.0) + h_12; let h_22 = r2 * d2_2 / c_2.powf(3.0 / 2.0) + h_12; ([h_11, h_12, h_22], [g_1, g_2]) }; let [α_1, α_2] = newton_sym2x2(g, [0.0, 0.0], self.config.newton_iters); (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 + α_2)) } /// Find angles where the geodesic passing through the side from `cap1` at height `z_1` /// to `cap2` at height `z_2` crosses the cap edges. /// **Panics if `cap2.angle < cap1.angle`.** /// /// Uses [`newton_sym2x2`]. fn cap_side_cap_crossing( &self, cap1 : &CapPoint, z_1 : f64, cap2 : &CapPoint, z_2 : f64, init_by_cap2 : bool ) -> (Angle, Angle) { let r = self.radius; let &CapPoint { r : r_1, angle : φ_1 } = cap1; let &CapPoint { r : r_2, angle : φ_2 } = cap2; assert!(φ_2 >= φ_1); assert_ne!(r_1, r); assert_ne!(r_2, r); assert_ne!(z_2, z_1); if r_1 == 0.0 && r_2 == 0.0 { // Singular case: both points are in the middle of the caps. return (φ_1, φ_1) } let r2 = r * r; let d = (z_2 - z_1).abs(); let d2 = d * d; let r2_1 = r_1 * r_1; let r2_2 = r_2 * r_2; let rr_1 = r * r_1; let rr_2 = r * r_2; let f = |α_1 : f64, α_2 : f64| { let cos_α1 = α_1.cos(); let sin_α1 = α_1.sin(); let cos_α2 = α_2.cos(); let sin_α2 = α_2.sin(); //let cos2_α1 = cos_α1 * cos_α1; let sin2_α1 = sin_α1 * sin_α1; //let cos2_α2 = cos_α2 * cos_α2; let sin2_α2 = sin_α2 * sin_α2; let ψ = φ_2 - φ_1 - α_1 - α_2; let ψ2 = ψ * ψ; let ψ2r2 = ψ2 * r2; //let r4 = r2 * r2; let b = d2 + ψ2r2; let c = r2 * ψ / b.sqrt(); let e_1 = r2 + r2_1 - 2.0 * rr_1 * cos_α1; let e_2 = r2 + r2_2 - 2.0 * rr_2 * cos_α2; let g_1 = rr_1 * sin_α1 / e_1.sqrt() - c; let g_2 = rr_2 * sin_α2 / e_2.sqrt() - c; let h_12 = r2 * (1.0 - ψ2r2 / b) / b.sqrt(); // let h_11 = rr_1 * ( (r2 + r2_1) * cos_α1 - rr_1 * ( sin2_α1 + 2.0 * cos2_α1) ) // / e_1.powf(3.0/2.0) + h_12; // let h_22 = rr_2 * ( (r2 + r2_2) * cos_α2 - rr_2 * ( sin2_α2 + 2.0 * cos2_α2) ) // / e_2.powf(3.0/2.0) + h_12; // let h_11 = rr_1 * cos_α1 / e_1.sqrt() - rr_1*rr_1 * sin2_α1 / e_1.powf(3.0/2.0) + h_12; // let h_22 = rr_2 * cos_α2 / e_2.sqrt() - rr_2*rr_2 * sin2_α2 / e_2.powf(3.0/2.0) + h_12; let h_11 = rr_1 * (cos_α1 - rr_1 * sin2_α1 / e_1) / e_1.sqrt() + h_12; let h_22 = rr_2 * (cos_α2 - rr_2 * sin2_α2 / e_2) / e_2.sqrt() + h_12; ([h_11, h_12, h_22], [g_1, g_2]) }; let α_init = if init_by_cap2 { [φ_2 - φ_1, 0.0] } else { [0.0, φ_2 - φ_1] }; let [α_1, α_2] = newton_sym2x2(f, α_init, self.config.newton_iters); (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 - α_2)) } /// Calculates the log between points on a `cap` and a `side` of the cylinder, in this direction. /// The `z` coordinate of the cap and an indication whether it is a `top` or bottom cap must /// also be given. fn cap_side_log( &self, cap : &CapPoint, (z, top) : (f64, bool), side : &SidePoint ) -> Tangent { let r = self.radius; if indistinguishable(side.z, z) { // Degenerate case let capedge = CapPoint{ angle : side.angle, r }; cap.log(&capedge) } else if indistinguishable(r, cap.r) && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { // Degenerate case let sideedge = SidePoint{ angle : cap.angle, z}; cap.tangent_from_side(top, sideedge.log(r, side)) } else { let φ = self.side_cap_crossing(side, cap, z); let capedge = CapPoint{ angle : φ, r }; let sideedge = SidePoint{ angle : φ, z }; let t1 = cap.log(&capedge); let t2 = sideedge.log(r, side); // Either option should give the same result. // The first one avoids division, but seems numerically more unstable due to // sines and cosines. //t1 + capedge.tangent_from_side(top, t2) let n = t1.norm(L2); if n < f64::EPSILON { capedge.tangent_from_side(top, t2) } else { (t1/n)*(n + t2.norm(L2)) } } } /// Calculates the log between points on a `side` and a `cap` of the cylinder, in this direction. /// The `z` coordinate of the cap and an indication whether it is a `top` or bottom cap must /// also be given. fn side_cap_log( &self, side : &SidePoint, cap : &CapPoint, (z, top) : (f64, bool), ) -> Tangent { let r = self.radius; if indistinguishable(side.z, z) { // Degenerate case let capedge = CapPoint{ angle : side.angle, r }; capedge.tangent_to_side(top, capedge.log(cap)) } else if indistinguishable(r, cap.r) && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { // Degenerate case side.log(r, &SidePoint{ z, angle : cap.angle }) } else { let φ = self.side_cap_crossing(side, cap, z); let capedge = CapPoint{ angle : φ, r }; let sideedge = SidePoint{ angle : φ, z }; let t1 = side.log(r, &sideedge); let t2 = capedge.log(cap); // Either option should give the same result. // The first one avoids division, but seems numerically more unstable due to // sines and cosines. // t1 + capedge.tangent_to_side(top, t2) let n = t1.norm(L2); if n < f64::EPSILON { capedge.tangent_to_side(top, t2) } else { (t1/n)*(n + t2.norm(L2)) } } } /// Calculates the log between points on two sides of the cylinder, assuming the corresonding /// geodesic crosses a cap at height `z`. The `top` parameter indicates whether this is a /// top cap. fn side_cap_side_log( &self, side1 : &SidePoint, (z, top) : (f64, bool), side2 : &SidePoint ) -> Tangent { let r = self.radius; if indistinguishable(side1.z, z) { // Degenerate case let capedge1 = CapPoint{ angle : side1.angle, r }; capedge1.tangent_to_side(top, self.cap_side_log(&capedge1, (z, top), side2)) } else if indistinguishable(side2.z, z) { // Degenerate case let capedge2 = CapPoint{ angle : side2.angle, r }; self.side_cap_log(side1, &capedge2, (z, top)) } else { let (φ1, φ2) = if side2.angle >= side1.angle { self.side_cap_side_crossing(side1, z, side2) } else { swap(self.side_cap_side_crossing(side2, z, side1)) }; let capedge1 = CapPoint{ angle : φ1, r }; let sideedge1 = SidePoint{ angle : φ1, z }; let capedge2 = CapPoint{ angle : φ2, r }; let sideedge2 = SidePoint{ angle : φ2, z }; let t1 = side1.log(r, &sideedge1); let t2 = capedge1.log(&capedge2); let t3 = sideedge2.log(r, &side2); // Either option should give the same result. // The first one avoids division, but seems numerically more unstable due to // sines and cosines. // // t1 + capedge1.tangent_to_side(top, t2 + capedge2.tangent_from_side(top, t3)) let n = t1.norm(L2); if n < f64::EPSILON { let n2 = t2.norm(L2); capedge1.tangent_to_side(top, if n2 < f64::EPSILON { capedge2.tangent_from_side(top, t3) } else { (t2/n2)*(n2 + t3.norm(L2)) } ) } else { (t1/n)*(n + t2.norm(L2) + t3.norm(L2)) } } } /// Calculates the log between points on two caps of the cylinder, assuming the corresonding /// geodesic crosses the side. The heights of the caps and indications whether they are /// top caps, must also be given. fn cap_side_cap_log( &self, cap1 : &CapPoint, (z1, top1) : (f64, bool), cap2 : &CapPoint, (z2, top2) : (f64, bool), init_by_cap2 : bool, ) -> Tangent { let r = self.radius; if indistinguishable(cap1.r, r) { // Degenerate case let sideedge1 = SidePoint{ angle : cap1.angle, z : z1 }; cap1.tangent_from_side(top1, self.side_cap_log(&sideedge1, cap2, (z2, top2))) } else if indistinguishable(cap2.r, r) { // Degenerate case let sideedge2 = SidePoint{ angle : cap2.angle, z : z2 }; self.cap_side_log(cap1, (z1, top1), &sideedge2) } else { let (φ1, φ2) = if cap2.angle >= cap1.angle { self.cap_side_cap_crossing(cap1, z1, cap2, z2, init_by_cap2) } else { swap(self.cap_side_cap_crossing(cap2, z2, cap1, z1, !init_by_cap2)) }; let sideedge1 = SidePoint{ angle : φ1, z : z1 }; let capedge1 = CapPoint{ angle : φ1, r }; let sideedge2 = SidePoint{ angle : φ2, z : z2}; let capedge2 = CapPoint{ angle : φ2, r }; let t1 = cap1.log(&capedge1); let t2 = sideedge1.log(r, &sideedge2); let t3 = capedge2.log(cap2); // Either option should give the same result. // The first one avoids division, but seems numerically more unstable due to // sines and cosines. // t1 + capedge1.tangent_from_side(top1, t2 + capedge2.tangent_to_side(top2, t3)) let n = t1.norm(L2); if n < f64::EPSILON { let n2 = t2.norm(L2); capedge1.tangent_from_side(top1, if n2 < f64::EPSILON { capedge2.tangent_to_side(top2, t3) } else { (t2/n2)*(n2 + t3.norm(L2)) } ) } else { (t1/n)*(n + t2.norm(L2) + t3.norm(L2)) } } } /// Calculates both the logarithmic map and distance between two points. fn log_dist(&self, source : &Point, destination : &Point) -> (Tangent, f64) { use Point::*; match (source, destination) { (Top(cap1), Top(cap2)) => { best_tangent([cap1.log(cap2)]) }, (Bottom(cap1), Bottom(cap2)) => { best_tangent([cap1.log(cap2)]) }, (Bottom(cap), Side(side)) => { best_tangent([self.cap_side_log(cap, (self.bottom_z(), false), side)]) }, (Top(cap), Side(side)) => { best_tangent([self.cap_side_log(cap, (self.top_z(), true), side)]) }, (Side(side), Bottom(cap)) => { best_tangent([self.side_cap_log(side, cap, (self.bottom_z(), false))]) }, (Side(side), Top(cap)) => { best_tangent([self.side_cap_log(side, cap, (self.top_z(), true))]) }, (Side(side1), Side(side2)) => { best_tangent([ side1.log(self.radius, side2), self.side_cap_side_log(side1, (self.top_z(), true), side2), self.side_cap_side_log(side1, (self.bottom_z(), false), side2), ]) }, (Top(cap1), Bottom(cap2)) => { best_tangent([ // We try a few possible initialisations for Newton self.cap_side_cap_log( cap1, (self.top_z(), true), cap2, (self.bottom_z(), false), false ), self.cap_side_cap_log( cap1, (self.top_z(), true), cap2, (self.bottom_z(), false), true ), ]) }, (Bottom(cap1), Top(cap2)) => { best_tangent([ // We try a few possible initialisations for Newton self.cap_side_cap_log( cap1, (self.bottom_z(), false), cap2, (self.top_z(), true), false ), self.cap_side_cap_log( cap1, (self.bottom_z(), false), cap2, (self.top_z(), true), true ), ]) }, } } /// Calculates the exponential map of `point` in the direction `t` until the next edge. /// If `t` was fully exhausted before reaching an edge, the second return value is [`None`], /// otherwise it is a [`Some`] of the remaining tangent, translated at the returned point. #[allow(unreachable_code)] #[allow(unused_variables)] fn partial_exp(&self, point : Point, t : Tangent) -> (Point, Option<Tangent>) { match point { Point::Top(cap) => { let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); match t_new_basis { None => (Point::Top(cap_new), None), Some(t_new) => { let side_new = SidePoint{ angle : cap_new.angle, z : self.top_z() }; (Point::Side(side_new), Some(cap_new.tangent_to_side(true, t_new))) } } }, Point::Bottom(cap) => { let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); match t_new_basis { None => (Point::Bottom(cap_new), None), Some(t_new) => { let side_new = SidePoint{ angle : cap_new.angle, z : self.bottom_z() }; (Point::Side(side_new), Some(cap_new.tangent_to_side(false, t_new))) } } }, Point::Side(side) => { let lims = (self.bottom_z(), self.top_z()); let (side_new, t_new_basis) = side.partial_exp(self.radius, lims, &t); match t_new_basis { None => (Point::Side(side_new), None), Some(t_new) => { if side_new.z >= self.top_z() - f64::EPSILON { let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; (Point::Top(cap_new), Some(cap_new.tangent_from_side(true, t_new))) } else if side_new.z <= self.bottom_z() + f64::EPSILON { let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; (Point::Bottom(cap_new), Some(cap_new.tangent_from_side(false, t_new))) } else { (Point::Side(side_new), None) } } } } } } /// Calculates the exponential map from `point` in the direction of `tangent`. fn exp(&self, point : &Point, tangent : &Tangent) -> Point { let mut p = *point; let mut t = *tangent; loop { (p, t) = match self.partial_exp(p, t) { (p, None) => break p, (p, Some(t)) => (p, t), }; } } /// Check that `point` has valid coordinates, and normalise angles pub fn normalise(&self, point : Point) -> Option<Point> { match point { Point::Side(side) => { let a = self.bottom_z(); let b = self.top_z(); (a <= side.z && side.z <= b).then(|| { Point::Side(SidePoint{ angle : normalise_angle(side.angle), .. side }) }) }, Point::Bottom(cap) => { (cap.r <= self.radius).then(|| { Point::Bottom(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) }) }, Point::Top(cap) => { (cap.r <= self.radius).then(|| { Point::Top(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) }) }, } } /// Convert `p` into a a point associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn point_on(&self, point : Point) -> OnCylinder<'_> { match self.normalise(point) { None => panic!("{point:?} not on cylinder {self:?}"), Some(point) => OnCylinder { cylinder : self, point } } } /// Convert `p` into a a point on side associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn point_on_side(&self, side : SidePoint) -> OnCylinder<'_> { self.point_on(Point::Side(side)) } /// Convert `p` into a a point on top associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn point_on_top(&self, cap : CapPoint) -> OnCylinder<'_> { self.point_on(Point::Top(cap)) } /// Convert `p` into a a point on bottom associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn point_on_bottom(&self, cap : CapPoint) -> OnCylinder<'_> { self.point_on(Point::Bottom(cap)) } /// Convert `p` into a a point on side associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn on_side(&self, angle : Angle, z : f64) -> OnCylinder<'_> { self.point_on_side(SidePoint{ angle, z }) } /// Convert `p` into a a point on top associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn on_top(&self, angle : Angle, r : f64) -> OnCylinder<'_> { self.point_on_top(CapPoint{ angle, r }) } /// Convert `p` into a a point on bottom associated with the cylinder. /// /// May panic if the coordinates are invalid. pub fn on_bottom(&self, angle : Angle, r : f64) -> OnCylinder<'_> { self.point_on_bottom(CapPoint{ angle, r }) } } impl<'a> OnCylinder<'a> { /// Return the cylindrical coordinates of this point pub fn cyl_coords(&self) -> CylCoords { self.cylinder.cyl_coords(&self.point) } } impl<'a> EmbeddedManifoldPoint for OnCylinder<'a> { type EmbeddedCoords = Loc<f64, 3>; /// Get embedded 3D coordinates fn embedded_coords(&self) -> Loc<f64, 3> { self.cyl_coords().to_cartesian() } } impl<'a> ManifoldPoint for OnCylinder<'a> { type Tangent = Tangent; fn exp(self, tangent : &Self::Tangent) -> Self { let cylinder = self.cylinder; let point = cylinder.exp(&self.point, tangent); OnCylinder { cylinder, point } } fn log(&self, other : &Self) -> Self::Tangent { assert!(self.cylinder == other.cylinder); self.cylinder.log_dist(&self.point, &other.point).0 } fn dist_to(&self, other : &Self) -> f64 { assert!(self.cylinder == other.cylinder); self.cylinder.log_dist(&self.point, &other.point).1 } fn tangent_origin(&self) -> Self::Tangent { Loc([0.0, 0.0]) } } #[cfg(test)] mod tests { use super::*; static TOL : f64 = 1e-7; macro_rules! check_distance { ($distance : expr, $expected : expr) => { assert!( ($distance-$expected).abs() < TOL, "{} = {}, expected = {}", stringify!($distance), $distance, $expected, ) } } macro_rules! check_vec_eq { ($left : expr, $right : expr) => { let err = ($left-$right).norm(L2); if err > TOL { panic!("{:?} != {:?} [error {err}]", $left, $right); } } } macro_rules! check_point_eq { ($left : expr, $right : expr) => { match ($left, $right) { (Point::Top(a), Point::Top(b)) | (Point::Bottom(a), Point::Bottom(b))=> { if (a.angle-b.angle).abs() > TOL || (a.r-b.r).abs() > TOL { panic!("{:?} != {:?}", a, b) } }, (Point::Side(a), Point::Side(b)) => { if (a.angle-b.angle).abs() > TOL || (a.z-b.z).abs() > TOL { panic!("{:?} != {:?}", a, b) } }, (a, b) => { panic!("{:?} != {:?}", a, b) } } } } static CYL : Cylinder = Cylinder { radius : 1.0, height : 1.0, config : CylinderConfig { newton_iters : 20 }, }; /// Tests for correct distance calculation beween two points on the same cap. #[test] fn intra_cap_dist() { let π = f64::PI; let p1 = CYL.on_top(0.0, 0.5); let p2 = CYL.on_top(π, 0.5); let p3 = CYL.on_top(π/2.0, 0.5); check_distance!(p1.dist_to(&p2), 1.0); check_distance!(p2.dist_to(&p3), 0.5_f64.sqrt()); check_distance!(p3.dist_to(&p1), 0.5_f64.sqrt()); } /// Tests for correct distance calculation beween two points on the side. #[test] fn intra_side_dist() { let π = f64::PI; let p1 = CYL.on_side(0.0, 0.0); let p2 = CYL.on_side(0.0, 0.4); let p3 = CYL.on_side(π/2.0, 0.0); check_distance!(p1.dist_to(&p2), 0.4); check_distance!(p1.dist_to(&p3), π/2.0*CYL.radius); } /// Tests for correct distance calculation beween two points on the side, when the corresponding /// minimal geodesic has to cross a cap. #[test] fn intra_side_over_cap_dist() { let π = f64::PI; let off = 0.05; let z = CYL.top_z() - off; let p1 = CYL.on_side(0.0, z); let p2 = CYL.on_side(π, z); check_distance!(p1.dist_to(&p2), 2.0 * (CYL.radius + off)); } /// Tests for correct distance calculation between points on top and bottom caps. #[test] fn top_bottom_dist() { let π = f64::PI; let p1 = CYL.on_top(0.0, 0.0); let p2 = CYL.on_bottom(0.0, 0.0); check_distance!(p1.dist_to(&p2), 2.0 * CYL.radius + CYL.height); let p1 = CYL.on_top(0.0, CYL.radius / 2.0); let p2 = CYL.on_bottom(0.0, CYL.radius / 2.0); let p3 = CYL.on_bottom(π, CYL.radius / 2.0); check_distance!(p1.dist_to(&p2), CYL.radius + CYL.height); check_distance!(p1.dist_to(&p3), 2.0 * CYL.radius + CYL.height); } /// Test for correct distance calculation between points on the side and a cap. #[test] fn top_side_dist() { let p1 = CYL.on_top(0.0, 0.0); let p2 = CYL.on_side(0.0, 0.0); check_distance!(p1.dist_to(&p2), CYL.radius + CYL.height / 2.0); } /// Tests for correct tangent calculation from a cap to the side. #[test] fn cap_side_partial_exp() { let π = f64::PI; let angles = [0.0, π/2.0, π*5.0/6.0, π*7.0/5.0]; for φ in angles { let p = CYL.on_top(φ, CYL.radius / 2.0); let q_target = CYL.on_side(φ, CYL.height / 2.0); let t = Loc([CYL.radius, 0.0]).rotate(φ); let t_target = Loc([0.0, -CYL.radius / 2.0]); let (q, t_left) = CYL.partial_exp(p.point, t); check_point_eq!(q, q_target.point); if let Some(t_left_) = t_left { check_vec_eq!(t_left_, t_target); } else { panic!("No tangent left"); } } for φ in angles { let p = CYL.on_top(φ + π/2.0, CYL.radius); let q_target = CYL.on_side(φ, CYL.height / 2.0); let t = 2.0 * Loc([CYL.radius, -CYL.radius]).rotate(φ); let t_target = Loc([-CYL.radius, -CYL.radius]); let (q, t_left) = CYL.partial_exp(p.point, t); check_point_eq!(q, q_target.point); if let Some(t_left_) = t_left { check_vec_eq!(t_left_, t_target); } else { panic!("No tangent left"); } } } /// Tests for correct tangent calculation from the side to a cap. #[test] fn side_top_exp() { let π = f64::PI; let angles = [0.0, π/2.0, π*5.0/6.0, π*7.0/5.0]; for φ in angles { let pt = CYL.on_top(φ, CYL.radius); let t = Loc([0.1, 0.3]).rotate(φ); let b = pt.clone().exp(&t); let a = pt.exp(&(-t)); check_point_eq!(a.exp(&(2.0*t)).point, b.point); } } /// Tests that tangent “returned” on edge from cap to top, correctly /// sums with a top tangent. #[test] fn cap_side_log_exp() { let π = f64::PI; let angles = [0.0, π/2.0, π*5.0/6.0, π*7.0/5.0]; for top in [true, false] { for (&φ, &ψ) in angles.iter().zip(angles.iter().rev()) { let a = if top { CYL.on_top(φ, CYL.radius/2.0) } else { CYL.on_bottom(φ, CYL.radius/2.0) }; let b = CYL.on_side(ψ, 0.0); let t = a.log(&b); let (p@Point::Side(side), Some(tpb)) = CYL.partial_exp(a.point, t) else { panic!("No tangent or point not on side"); }; let pp = CYL.point_on(p); let tpb2 = pp.log(&b); let tap = a.log(&pp); check_vec_eq!(tpb, tpb2); if top { assert!(indistinguishable(side.z, CYL.top_z())); } else { assert!(indistinguishable(side.z, CYL.bottom_z())); } let cap = CapPoint{ angle : side.angle, r : CYL.radius }; let tbpcap = cap.tangent_from_side(top, tpb); check_vec_eq!(tap + tbpcap, t); } } } /// Tests that tangent “returned” on edge from top to side, correctly /// sums with a side tangent. #[test] fn side_cap_log_exp() { let π = f64::PI; let angles = [0.0, π/2.0, π*5.0/6.0, π*7.0/5.0]; for top in [true, false] { for (&φ, &ψ) in angles.iter().zip(angles.iter().rev()) { let a = CYL.on_side(ψ, 0.0); let b = if top { CYL.on_top(φ, CYL.radius/2.0) } else { CYL.on_bottom(φ, CYL.radius/2.0) }; let t = a.log(&b); let (p, cap, tpb) = match CYL.partial_exp(a.point, t) { (p@Point::Top(cap), Some(tpb)) if top => (p, cap, tpb), (p@Point::Bottom(cap), Some(tpb)) if !top => (p, cap, tpb), _ => panic!("No tangent or point not on correct cap"), }; let pp = CYL.point_on(p); let tpb2 = pp.log(&b); let tap = a.log(&pp); check_vec_eq!(tpb, tpb2); let tbpside = cap.tangent_to_side(top, tpb); check_vec_eq!(tap + tbpside, t); } } } }