--- a/src/newton.rs Fri Dec 06 14:27:14 2024 -0500 +++ b/src/newton.rs Fri Dec 06 14:57:11 2024 -0500 @@ -4,6 +4,10 @@ use alg_tools::types::*; +/// Approximately solves $f(x)=b$ using Newton's method in 1D. +/// +/// The function `g` should return $(f'(x), f(x))$. +/// The initial iterate will be `x`, and exactly `iters` iterations are taken. #[inline] pub fn newton_sym1x1<F : Float>( g : impl Fn(F) -> (F, F), @@ -17,6 +21,11 @@ x } +/// Approximately solves $f(x)=b$ using Newton's method in "D. +/// +/// The function `g` should return $(∇f(x), f(x))$. +/// The Hessian $A=∇f(x)$ should be symmetric and given in the form $[A_{11}, A_{12}, A_{22}]$. +/// The initial iterate will be `[x1, x2]`, and exactly `iters` iterations are taken. #[inline] pub fn newton_sym2x2<F : Float>( g : impl Fn(F, F) -> ([F; 3], [F; 2]),