185 } |
185 } |
186 |
186 |
187 /// Indicates whether an unfolded point `p` is on this face, i.e., |
187 /// Indicates whether an unfolded point `p` is on this face, i.e., |
188 /// has coordinates in [0,1]². |
188 /// has coordinates in [0,1]². |
189 pub fn is_in_face(&self, p: &Point) -> bool { |
189 pub fn is_in_face(&self, p: &Point) -> bool { |
190 p.iter().map(|t| t.abs()).all(|t| 0.0 <= t && t <= 1.0) |
190 p.iter().all(|t| 0.0 <= *t && *t <= 1.0) |
191 } |
191 } |
192 |
192 |
193 /// Given an unfolded point `p`, possibly outside this face, finds |
193 /// Given an unfolded point `p` and a destination point `d` in unfolded coordinates, |
194 /// the edge, presented by an adjacent face, in whose direction it is. |
194 /// but possibly outside this face, find the crossing point of the line between |
|
195 /// `p` and `d` on an edge of (`self`). Return the point and the edge presented |
|
196 /// by an adjacent face. |
195 /// |
197 /// |
196 /// **TODO:** this does not correctly handle corners, i.e., when the point is not in |
198 /// Crossing at corners is decided arbitrarily. |
197 /// the direction of an adjacent face. |
199 pub fn find_crossing(&self, p :& Point, d : &Point) -> (Face, Point) { |
198 pub fn find_crossing(&self, p : &Point) -> Face { |
200 //assert!(self.is_in_face(p)); |
|
201 |
|
202 if self.is_in_face(d) { |
|
203 return (*self, *p) |
|
204 } |
|
205 |
|
206 use std::cmp::Ordering::*; |
|
207 |
199 let &Loc([x, y]) = p; |
208 let &Loc([x, y]) = p; |
200 use std::cmp::Ordering::*; |
209 let &Loc([xd, yd]) = d; |
201 let crossing = |t| match (0.0 <= t, t<=1.0) { |
210 let tx = xd - x; |
|
211 let ty = yd - y; |
|
212 |
|
213 // Move towards tangent as (x + s tx, y + s ty) for the largest s<=1.0 for which |
|
214 // both coordinates is within [0, 1]. |
|
215 let sx = match tx.partial_cmp(&0.0) { |
|
216 Some(Less) => 1.0f64.min(-x/tx), |
|
217 Some(Greater) => 1.0f64.min((1.0-x)/tx), |
|
218 _ => 1.0, |
|
219 }; |
|
220 let sy = match ty.partial_cmp(&0.0) { |
|
221 Some(Less) => 1.0f64.min(-y/ty), |
|
222 Some(Greater) => 1.0f64.min((1.0-y)/ty), |
|
223 _ => 1.0, |
|
224 }; |
|
225 // We use the point where one coordinate comes within the range to decide on |
|
226 // the edge. |
|
227 let s = sx.max(sy); |
|
228 // But move such that both coordinates are within the range. |
|
229 let c = sx.min(sy); |
|
230 let (cx, cy) = (x + c*tx, y + c*ty); |
|
231 |
|
232 let crossing = |t| match (0.0 <= t, t <= 1.0) { |
202 (false, _) => Less, |
233 (false, _) => Less, |
203 (_, false) => Greater, |
234 (_, false) => Greater, |
204 _ => Equal, |
235 _ => Equal, |
205 }; |
236 }; |
206 |
237 |
207 // TODO: how to properly handle corners? Just throw an error? |
238 // TODO: how to properly handle corners? Just throw an error? |
208 match (crossing(x), crossing(y)) { |
239 let crossing = match (crossing(x + s*tx), crossing(y + s*ty)) { |
209 (Equal, Equal) => *self, |
240 (Equal, Equal) => *self, |
210 (Less, _) => self.adjacent_faces()[0], |
241 (Less, _) => self.adjacent_faces()[0], |
211 (Greater, _) => self.adjacent_faces()[1], |
242 (Greater, _) => self.adjacent_faces()[1], |
212 (Equal, Less) => self.adjacent_faces()[2], |
243 (Equal, Less) => self.adjacent_faces()[2], |
213 (Equal, Greater) => self.adjacent_faces()[3], |
244 (Equal, Greater) => self.adjacent_faces()[3], |
214 } |
245 }; |
|
246 (crossing, Loc([cx, cy])) |
215 } |
247 } |
216 |
248 |
217 /// Get embedded 3D coordinates |
249 /// Get embedded 3D coordinates |
218 pub fn embedded_coords(&self, p : &Point) -> Loc<f64, 3> { |
250 pub fn embedded_coords(&self, p : &Point) -> Loc<f64, 3> { |
219 let &Loc([x, y]) = p; |
251 let &Loc([x, y]) = p; |
276 impl ManifoldPoint for OnCube { |
308 impl ManifoldPoint for OnCube { |
277 type Tangent = Point; |
309 type Tangent = Point; |
278 |
310 |
279 fn exp(self, tangent : &Self::Tangent) -> Self { |
311 fn exp(self, tangent : &Self::Tangent) -> Self { |
280 let mut face = self.face; |
312 let mut face = self.face; |
281 let mut point = self.point + tangent; |
313 let mut point = self.point; |
|
314 let mut dest = self.point + tangent; |
282 loop { |
315 loop { |
283 let next_face = face.find_crossing(&point); |
316 let (next_face, cross) = face.find_crossing(&point, &dest); |
284 if next_face == face { |
317 if next_face == face { |
285 break |
318 break |
286 } |
319 } |
287 point = next_face.convert_adjacent(face, &point).unwrap(); |
320 point = next_face.convert_adjacent(face, &cross).unwrap(); |
|
321 dest = next_face.convert_adjacent(face, &dest).unwrap(); |
288 face = next_face; |
322 face = next_face; |
289 } |
323 } |
290 OnCube { face, point } |
324 OnCube { face, point : dest } |
291 } |
325 } |
292 |
326 |
293 fn log(&self, other : &Self) -> Self::Tangent { |
327 fn log(&self, other : &Self) -> Self::Tangent { |
294 self.log_dist(other).0 |
328 self.log_dist(other).0 |
295 } |
329 } |
309 |
343 |
310 #[test] |
344 #[test] |
311 fn convert_adjacent() { |
345 fn convert_adjacent() { |
312 let point = Loc([0.4, 0.6]); |
346 let point = Loc([0.4, 0.6]); |
313 |
347 |
314 for f1 in [F1, F2, F3, F4, F5, F6] { |
348 for f1 in Face::all() { |
315 for f2 in [F1, F2, F3, F4, F5, F6] { |
349 for f2 in Face::all() { |
316 println!("{:?}-{:?}", f1, f2); |
350 println!("{:?}-{:?}", f1, f2); |
317 match f1.convert_adjacent(f2, &point) { |
351 match f1.convert_adjacent(f2, &point) { |
318 None => assert_eq!(f2.opposing_face(), f1), |
352 None => assert_eq!(f2.opposing_face(), f1), |
319 Some(q) => { |
353 Some(q) => { |
320 match f2.convert_adjacent(f1, &q) { |
354 match f2.convert_adjacent(f1, &q) { |
331 // that a point outside the face will be returned to its point of origin. |
365 // that a point outside the face will be returned to its point of origin. |
332 // #[test] |
366 // #[test] |
333 // fn convert_paths() { |
367 // fn convert_paths() { |
334 // let point = Loc([0.4, 0.6]); |
368 // let point = Loc([0.4, 0.6]); |
335 |
369 |
336 // for f1 in [F1, F2, F3, F4, F5, F6] { |
370 // for f1 in Face::all() { |
337 // for f2 in [F1, F2, F3, F4, F5, F6] { |
371 // for f2 in Face::all() { |
338 // for p1 in f2.paths(f1) { |
372 // for p1 in f2.paths(f1) { |
339 // for p2 in f1.paths(f2) { |
373 // for p2 in f1.paths(f2) { |
340 // println!("{:?}-{:?}; {:?} {:?}", f1, f2, p1, p2); |
374 // println!("{:?}-{:?}; {:?} {:?}", f1, f2, p1, p2); |
341 // let v = &f2.convert(&p1, &point); |
375 // let v = &f2.convert(&p1, &point); |
342 // let q = f1.convert(&p2, v); |
376 // let q = f1.convert(&p2, v); |