Fri, 18 Nov 2022 10:29:50 +0200
Improvements and minor fixes to bisection tree refinement.
/*! Multi-dimensional cubes. This module provides the [`Cube`] type for multi-dimensional cubes $∏_{i=1}^N [a_i, b_i)$. As an example, to create a the two-dimensional cube $[0, 1] × [-1, 1]$, you can ``` # use alg_tools::sets::cube::Cube; let cube = Cube::new([[0.0, 1.0], [-1.0, 1.0]]); ``` or ``` # use alg_tools::sets::cube::Cube; # use alg_tools::types::float; let cube : Cube<float, 2> = [[0.0, 1.0], [-1.0, 1.0]].into(); ``` */ use serde::ser::{Serialize, Serializer, SerializeTupleStruct}; use crate::types::*; use crate::loc::Loc; use crate::sets::SetOrd; use crate::maputil::{ FixedLength, FixedLengthMut, map1, map1_indexed, map2, }; /// A multi-dimensional cube $∏_{i=1}^N [a_i, b_i)$ with the starting and ending points /// along $a_i$ and $b_i$ along each dimension of type `U`. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct Cube<U : Num, const N : usize>(pub(super) [[U; 2]; N]); // Need to manually implement as [F; N] serialisation is provided only for some N. impl<F : Num + Serialize, const N : usize> Serialize for Cube<F, N> where F: Serialize, { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { let mut ts = serializer.serialize_tuple_struct("Cube", N)?; for e in self.0.iter() { ts.serialize_field(e)?; } ts.end() } } impl<A : Num, const N : usize> FixedLength<N> for Cube<A,N> { type Iter = std::array::IntoIter<[A; 2], N>; type Elem = [A; 2]; #[inline] fn fl_iter(self) -> Self::Iter { self.0.into_iter() } } impl<A : Num, const N : usize> FixedLengthMut<N> for Cube<A,N> { type IterMut<'a> = std::slice::IterMut<'a, [A; 2]>; #[inline] fn fl_iter_mut(&mut self) -> Self::IterMut<'_> { self.0.iter_mut() } } impl<'a, A : Num, const N : usize> FixedLength<N> for &'a Cube<A,N> { type Iter = std::slice::Iter<'a, [A; 2]>; type Elem = &'a [A; 2]; #[inline] fn fl_iter(self) -> Self::Iter { self.0.iter() } } /// Iterator for [`Cube`] corners. pub struct CubeCornersIter<'a, U : Num, const N : usize> { index : usize, cube : &'a Cube<U, N>, } impl<'a, U : Num, const N : usize> Iterator for CubeCornersIter<'a, U, N> { type Item = Loc<U, N>; #[inline] fn next(&mut self) -> Option<Self::Item> { if self.index >= N { None } else { let i = self.index; self.index += 1; let arr = self.cube.map_indexed(|k, a, b| if (i>>k)&1 == 0 { a } else { b }); Some(arr.into()) } } } impl<U : Num, const N : usize> Cube<U, N> { /// Maps `f` over the triples $\\{(i, a\_i, b\_i)\\}\_{i=1}^N$ /// of the cube $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn map_indexed<T>(&self, f : impl Fn(usize, U, U) -> T) -> [T; N] { map1_indexed(self, |i, &[a, b]| f(i, a, b)) } /// Maps `f` over the tuples $\\{(a\_i, b\_i)\\}\_{i=1}^N$ /// of the cube $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn map<T>(&self, f : impl Fn(U, U) -> T) -> [T; N] { map1(self, |&[a, b]| f(a, b)) } /// Iterates over the start and end coordinates $\{(a_i, b_i)\}_{i=1}^N$ of the cube along /// each dimension. #[inline] pub fn iter_coords(&self) -> std::slice::Iter<'_, [U; 2]> { self.0.iter() } /// Returns the “start” coordinate $a_i$ of the cube $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn start(&self, i : usize) -> U { self.0[i][0] } /// Returns the end coordinate $a_i$ of the cube $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn end(&self, i : usize) -> U { self.0[i][1] } /// Returns the “start” $(a_1, … ,a_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$ /// spanned between $(a_1, … ,a_N)$ and $(b_1, … ,b_N)$. #[inline] pub fn span_start(&self) -> Loc<U, N> { Loc::new(self.map(|a, _b| a)) } /// Returns the end $(b_1, … ,b_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$ /// spanned between $(a_1, … ,a_N)$ and $(b_1, … ,b_N)$. #[inline] pub fn span_end(&self) -> Loc<U, N> { Loc::new(self.map(|_a, b| b)) } /// Iterates over the corners $\{(c_1, … ,c_N) | c_i ∈ \{a_i, b_i\}\}$ of the cube /// $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn iter_corners(&self) -> CubeCornersIter<'_, U, N> { CubeCornersIter{ index : 0, cube : self } } /// Returns the width-`N`-tuple $(b_1-a_1, … ,b_N-a_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$. #[inline] pub fn width(&self) -> Loc<U, N> { Loc::new(self.map(|a, b| b-a)) } /// Translates the cube $∏_{i=1}^N [a_i, b_i)$ by the `shift` $(s_1, … , s_N)$ to /// $∏_{i=1}^N [a_i+s_i, b_i+s_i)$. #[inline] pub fn shift(&self, shift : &Loc<U, N>) -> Self { let mut cube = self.clone(); for i in 0..N { cube.0[i][0] += shift[i]; cube.0[i][1] += shift[i]; } cube } /// Creates a new cube from an array. #[inline] pub fn new(data : [[U; 2]; N]) -> Self { Cube(data) } } impl<F : Float, const N : usize> Cube<F, N> { /// Returns the centre of the cube pub fn center(&self) -> Loc<F, N> { map1(self, |&[a, b]| (a + b) / F::TWO).into() } } impl<U : Num> Cube<U, 1> { /// Get the corners of the cube. /// /// TODO: generic implementation once const-generics can be involved in /// calculations. #[inline] pub fn corners(&self) -> [Loc<U, 1>; 2] { let [[a, b]] = self.0; [a.into(), b.into()] } } impl<U : Num> Cube<U, 2> { /// Get the corners of the cube in counter-clockwise order. /// /// TODO: generic implementation once const-generics can be involved in /// calculations. #[inline] pub fn corners(&self) -> [Loc<U, 2>; 4] { let [[a1, b1], [a2, b2]]=self.0; [[a1, a2].into(), [b1, a2].into(), [b1, b2].into(), [a1, b2].into()] } } impl<U : Num> Cube<U, 3> { /// Get the corners of the cube. /// /// TODO: generic implementation once const-generics can be involved in /// calculations. #[inline] pub fn corners(&self) -> [Loc<U, 3>; 8] { let [[a1, b1], [a2, b2], [a3, b3]]=self.0; [[a1, a2, a3].into(), [b1, a2, a3].into(), [b1, b2, a3].into(), [a1, b2, a3].into(), [a1, b2, b3].into(), [b1, b2, b3].into(), [b1, a2, b3].into(), [a1, a2, b3].into()] } } // TODO: Implement Add and Sub of Loc to Cube, and Mul and Div by U : Num. impl<U : Num, const N : usize> From<[[U; 2]; N]> for Cube<U, N> { #[inline] fn from(data : [[U; 2]; N]) -> Self { Cube(data) } } impl<U : Num, const N : usize> From<Cube<U, N>> for [[U; 2]; N] { #[inline] fn from(Cube(data) : Cube<U, N>) -> Self { data } } impl<U, const N : usize> Cube<U, N> where U : Num + PartialOrd { /// Checks whether the cube is non-degenerate, i.e., the start coordinate /// of each axis is strictly less than the end coordinate. #[inline] pub fn nondegenerate(&self) -> bool { self.0.iter().all(|range| range[0] < range[1]) } /// Checks whether the cube intersects some `other` cube. /// Matching boundary points are not counted, so `U` is ideally a [`Float`]. #[inline] pub fn intersects(&self, other : &Cube<U, N>) -> bool { self.iter_coords().zip(other.iter_coords()).all(|([a1, b1], [a2, b2])| { a1 < b2 && a2 < b1 }) } /// Checks whether the cube contains some `other` cube. pub fn contains_set(&self, other : &Cube<U, N>) -> bool { self.iter_coords().zip(other.iter_coords()).all(|([a1, b1], [a2, b2])| { a1 <= a2 && b1 >= b2 }) } /// Produces the point of minimum $ℓ^p$-norm within the cube `self` for any $p$-norm. /// This is the point where each coordinate is closest to zero. #[inline] pub fn minnorm_point(&self) -> Loc<U, N> { let z = U::ZERO; // As always, we assume that a ≤ b. self.map(|a, b| { debug_assert!(a <= b); match (a < z, z < b) { (false, _) => a, (_, false) => b, (true, true) => z } }).into() } /// Produces the point of maximum $ℓ^p$-norm within the cube `self` for any $p$-norm. /// This is the point where each coordinate is furthest from zero. #[inline] pub fn maxnorm_point(&self) -> Loc<U, N> { let z = U::ZERO; // As always, we assume that a ≤ b. self.map(|a, b| { debug_assert!(a <= b); match (a < z, z < b) { (false, _) => b, (_, false) => a, // A this stage we must have a < 0 (so U must be signed), and want to check // whether |a| > |b|. We can do this without assuming U to actually implement // `Neg` by comparing whether 0 > a + b. (true, true) => if z > a + b { a } else { b } } }).into() } } macro_rules! impl_common { ($($t:ty)*, $min:ident, $max:ident) => { $( impl<const N : usize> SetOrd for Cube<$t, N> { #[inline] fn common(&self, other : &Self) -> Self { map2(self, other, |&[a1, b1], &[a2, b2]| { debug_assert!(a1 <= b1 && a2 <= b2); [a1.$min(a2), b1.$max(b2)] }).into() } #[inline] fn intersect(&self, other : &Self) -> Option<Self> { let arr = map2(self, other, |&[a1, b1], &[a2, b2]| { debug_assert!(a1 <= b1 && a2 <= b2); [a1.$max(a2), b1.$min(b2)] }); arr.iter().all(|&[a, b]| a >= b).then(|| arr.into()) } } )* } } impl_common!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize, min, max); // Any NaN yields NaN impl_common!(f32 f64, minimum, maximum); impl<U : Num, const N : usize> std::ops::Index<usize> for Cube<U, N> { type Output = [U; 2]; #[inline] fn index(&self, index: usize) -> &Self::Output { &self.0[index] } } impl<U : Num, const N : usize> std::ops::IndexMut<usize> for Cube<U, N> { #[inline] fn index_mut(&mut self, index: usize) -> &mut Self::Output { &mut self.0[index] } }