Tue, 31 Dec 2024 23:49:09 -0500
simplify
/*! Integration with nalgebra. This module mainly implements [`Euclidean`], [`Norm`], [`Linear`], etc. for [`nalgebra`] matrices and vectors. It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as [`num_traits`] does. */ use nalgebra::{ Matrix, Storage, StorageMut, OMatrix, Dim, DefaultAllocator, Scalar, ClosedAddAssign, ClosedMulAssign, SimdComplexField, Vector, OVector, RealField, LpNorm, UniformNorm }; use nalgebra::base::constraint::{ ShapeConstraint, SameNumberOfRows, SameNumberOfColumns }; use nalgebra::base::dimension::*; use nalgebra::base::allocator::Allocator; use std::ops::Mul; use num_traits::identities::{Zero, One}; use crate::linops::*; use crate::euclidean::*; use crate::mapping::{Space, BasicDecomposition}; use crate::types::Float; use crate::norms::*; use crate::instance::Instance; impl<SM,N,M,E> Space for Matrix<E,N,M,SM> where SM: Storage<E,N,M> + Clone, N : Dim, M : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, DefaultAllocator : Allocator<N,M>, { type Decomp = BasicDecomposition; } impl<SM,SV,N,M,K,E> Mapping<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, DefaultAllocator : Allocator<N,K>, DefaultAllocator : Allocator<M,K>, DefaultAllocator : Allocator<N,M>, DefaultAllocator : Allocator<M,N> { type Codomain = OMatrix<E,N,K>; #[inline] fn apply<I : Instance<Matrix<E,M,K,SV>>>( &self, x : I ) -> Self::Codomain { x.either(|owned| self.mul(owned), |refr| self.mul(refr)) } } impl<'a, SM,SV,N,M,K,E> Linear<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, DefaultAllocator : Allocator<N,K>, DefaultAllocator : Allocator<M,K>, DefaultAllocator : Allocator<N,M>, DefaultAllocator : Allocator<M,N> { } impl<SM,SV1,N,M,K,E> GEMV<E, Matrix<E,M,K,SV1>> for Matrix<E,N,M,SM> where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, OMatrix<E, N, K> : AXPY<E>, N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + Float, DefaultAllocator : Allocator<N,K>, DefaultAllocator : Allocator<M,K>, DefaultAllocator : Allocator<N,M>, DefaultAllocator : Allocator<M,N> { #[inline] fn gemv<I : Instance<Matrix<E,M,K,SV1>>>( &self, y : &mut OMatrix<E,N,K>, α : E, x : I, β : E ) { x.eval(|x̃| Matrix::gemm(y, α, self, x̃, β)) } #[inline] fn apply_mut<'a, I : Instance<Matrix<E,M,K,SV1>>>(&self, y : &mut OMatrix<E,N,K>, x : I) { x.eval(|x̃| self.mul_to(x̃, y)) } } impl<SM,M,E> AXPY<E, OVector<E, M>> for Vector<E,M,SM> where SM: StorageMut<E,M> + Clone, M : Dim, E : Scalar + Zero + One + Float, DefaultAllocator : Allocator<M> { #[inline] fn add_mul<I : Instance<OVector<E, M>>>(self, α : E, x : I, β : E) -> OVector<E, M> { let mut owned = self.into_owned(); x.eval(|x̃| Matrix::axpy(&mut owned, α, x̃, β)); owned } #[inline] fn axpy<I : Instance<OVector<E, M>>>(&mut self, α : E, x : I, β : E) { x.eval(|x̃| Matrix::axpy(self, α, x̃, β)) } #[inline] fn copy_from<I : Instance<OVector<E, M>>>(&mut self, y : I) { y.eval(|ỹ| Matrix::copy_from(self, ỹ)) } #[inline] fn set_zero(&mut self) { self.iter_mut().for_each(|e| *e = E::ZERO); } #[inline] fn similar_origin(&self) -> OVector<E, M> { OVector::zeros_generic(M::from_usize(self.len()), Const) } } /* Implemented automatically as Euclidean. impl<SM,M,E> Projection<E, L2> for Vector<E,M,SM> where SM: StorageMut<E,M> + Clone, M : Dim, E : Scalar + Zero + One + Float + RealField, DefaultAllocator : Allocator<M> { #[inline] fn proj_ball_mut(&mut self, ρ : E, _ : L2) { let n = self.norm(L2); if n > ρ { self.iter_mut().for_each(|v| *v *= ρ/n) } } }*/ impl<SM,M,E> Projection<E, Linfinity> for Vector<E,M,SM> where SM: StorageMut<E,M> + Clone, M : Dim, E : Scalar + Zero + One + Float + RealField, DefaultAllocator : Allocator<M> { #[inline] fn proj_ball_mut(&mut self, ρ : E, _ : Linfinity) { self.iter_mut().for_each(|v| *v = num_traits::clamp(*v, -ρ, ρ)) } } impl<'own,SV1,SV2,SM,N,M,K,E> Adjointable<Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> for Matrix<E,N,M,SM> where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, SV2: Storage<E,N,K> + Clone, N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + SimdComplexField, DefaultAllocator : Allocator<N,K>, DefaultAllocator : Allocator<M,K>, DefaultAllocator : Allocator<N,M>, DefaultAllocator : Allocator<M,N> { type AdjointCodomain = OMatrix<E,M,K>; type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; #[inline] fn adjoint(&self) -> Self::Adjoint<'_> { Matrix::adjoint(self) } } /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. #[inline] fn metric_distance_squared<T, R1, C1, S1, R2, C2, S2>( /*ed: &EuclideanNorm,*/ m1: &Matrix<T, R1, C1, S1>, m2: &Matrix<T, R2, C2, S2>, ) -> T::SimdRealField where T: SimdComplexField, R1: Dim, C1: Dim, S1: Storage<T, R1, C1>, R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>, { m1.zip_fold(m2, T::SimdRealField::zero(), |acc, a, b| { let diff = a - b; acc + diff.simd_modulus_squared() }) } // TODO: should allow different input storages in `Euclidean`. impl<E,M,S> Euclidean<E> for Vector<E,M,S> where M : Dim, S : StorageMut<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { type Output = OVector<E, M>; #[inline] fn dot<I : Instance<Self>>(&self, other : I) -> E { Vector::<E,M,S>::dot(self, other.ref_instance()) } #[inline] fn norm2_squared(&self) -> E { Vector::<E,M,S>::norm_squared(self) } #[inline] fn dist2_squared<I : Instance<Self>>(&self, other : I) -> E { metric_distance_squared(self, other.ref_instance()) } } impl<E,M,S> StaticEuclidean<E> for Vector<E,M,S> where M : DimName, S : StorageMut<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn origin() -> OVector<E, M> { OVector::zeros() } } /// The default norm for `Vector` is [`L2`]. impl<E,M,S> Normed<E> for Vector<E,M,S> where M : Dim, S : Storage<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { type NormExp = L2; #[inline] fn norm_exponent(&self) -> Self::NormExp { L2 } #[inline] fn is_zero(&self) -> bool { Vector::<E,M,S>::norm_squared(self) == E::ZERO } } impl<E,M,S> HasDual<E> for Vector<E,M,S> where M : Dim, S : Storage<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { // TODO: Doesn't work with different storage formats. type DualSpace = Self; } impl<E,M,S> Norm<E, L1> for Vector<E,M,S> where M : Dim, S : Storage<E,M>, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : L1) -> E { nalgebra::Norm::norm(&LpNorm(1), self) } } impl<E,M,S> Dist<E, L1> for Vector<E,M,S> where M : Dim, S : Storage<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn dist<I : Instance<Self>>(&self, other : I, _ : L1) -> E { nalgebra::Norm::metric_distance(&LpNorm(1), self, other.ref_instance()) } } impl<E,M,S> Norm<E, L2> for Vector<E,M,S> where M : Dim, S : Storage<E,M>, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : L2) -> E { nalgebra::Norm::norm(&LpNorm(2), self) } } impl<E,M,S> Dist<E, L2> for Vector<E,M,S> where M : Dim, S : Storage<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn dist<I : Instance<Self>>(&self, other : I, _ : L2) -> E { nalgebra::Norm::metric_distance(&LpNorm(2), self, other.ref_instance()) } } impl<E,M,S> Norm<E, Linfinity> for Vector<E,M,S> where M : Dim, S : Storage<E,M>, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : Linfinity) -> E { nalgebra::Norm::norm(&UniformNorm, self) } } impl<E,M,S> Dist<E, Linfinity> for Vector<E,M,S> where M : Dim, S : Storage<E,M> + Clone, E : Float + Scalar + Zero + One + RealField, DefaultAllocator : Allocator<M> { #[inline] fn dist<I : Instance<Self>>(&self, other : I, _ : Linfinity) -> E { nalgebra::Norm::metric_distance(&UniformNorm, self, other.ref_instance()) } } /// Helper trait to hide the symbols of [`nalgebra::RealField`]. /// /// By assuming `ToNalgebraRealField` intead of `nalgebra::RealField` as a trait bound, /// functions can piggyback `nalgebra::RealField` without exponsing themselves to it. /// Thus methods from [`num_traits`] can be used directly without similarly named methods /// from [`nalgebra`] conflicting with them. Only when absolutely necessary to work with /// nalgebra, one can convert to the nalgebra view of the same type using the methods of /// this trait. pub trait ToNalgebraRealField : Float { /// The nalgebra type corresponding to this type. Usually same as `Self`. /// /// This type only carries `nalgebra` traits. type NalgebraType : RealField; /// The “mixed” type corresponding to this type. Usually same as `Self`. /// /// This type carries both `num_traits` and `nalgebra` traits. type MixedType : RealField + Float; /// Convert to the nalgebra view of `self`. fn to_nalgebra(self) -> Self::NalgebraType; /// Convert to the mixed (nalgebra and num_traits) view of `self`. fn to_nalgebra_mixed(self) -> Self::MixedType; /// Convert from the nalgebra view of `self`. fn from_nalgebra(t : Self::NalgebraType) -> Self; /// Convert from the mixed (nalgebra and num_traits) view to `self`. fn from_nalgebra_mixed(t : Self::MixedType) -> Self; } impl ToNalgebraRealField for f32 { type NalgebraType = f32; type MixedType = f32; #[inline] fn to_nalgebra(self) -> Self::NalgebraType { self } #[inline] fn to_nalgebra_mixed(self) -> Self::MixedType { self } #[inline] fn from_nalgebra(t : Self::NalgebraType) -> Self { t } #[inline] fn from_nalgebra_mixed(t : Self::MixedType) -> Self { t } } impl ToNalgebraRealField for f64 { type NalgebraType = f64; type MixedType = f64; #[inline] fn to_nalgebra(self) -> Self::NalgebraType { self } #[inline] fn to_nalgebra_mixed(self) -> Self::MixedType { self } #[inline] fn from_nalgebra(t : Self::NalgebraType) -> Self { t } #[inline] fn from_nalgebra_mixed(t : Self::MixedType) -> Self { t } }