Tue, 25 Oct 2022 23:05:40 +0300
Added NormExponent trait for exponents of norms
/*! Aggregation / summarisation of information in branches of bisection trees. */ use crate::types::*; use crate::sets::Set; /// Trait for aggregating information about a branch of a [bisection tree][super::BT]. /// /// Currently [`Bounds`] is the only provided aggregator. /// It keeps track of upper and lower bounds of a function representeed by the `BT` by /// summing [`Bounds`] produced by [`LocalAnalysis`][super::support::LocalAnalysis] of the /// [`Support`][super::support::Support]s of the data stored in the tree. /// For the `Bounds` aggregator: /// * [`Self::aggregate`] sums input bounds to the current bound. This provides a conservative /// estimate of the upper and lower bounds of a sum of functions. /// * [`Self::summarise`] takes the maximum of the input bounds. This calculates the bounds /// of a function on a greater domain from bounds on subdomains /// (in practise [`Cube`][crate::sets::Cube]s). /// pub trait Aggregator : Clone + std::fmt::Debug { /// Aggregate a new data to current state. fn aggregate<I>(&mut self, aggregates : I) where I : Iterator<Item=Self>; /// Summarise several other aggregators, resetting current state. fn summarise<'a, I>(&'a mut self, aggregates : I) where I : Iterator<Item=&'a Self>; /// Create a new “empty” aggregate data. fn new() -> Self; } /// An [`Aggregator`] that doesn't aggregate anything. #[derive(Clone,Debug)] pub struct NullAggregator; impl Aggregator for NullAggregator { // TODO: these should probabably also take a Cube as argument to // allow integrating etc. fn aggregate<I>(&mut self, _aggregates : I) where I : Iterator<Item=Self> {} fn summarise<'a, I>(&'a mut self, _aggregates : I) where I : Iterator<Item=&'a Self> {} fn new() -> Self { NullAggregator } } /// Upper and lower bounds on an `F`-valued function. #[derive(Copy,Clone,Debug)] pub struct Bounds<F>( /// Lower bound pub F, /// Upper bound pub F ); impl<F : Copy> Bounds<F> { /// Returns the lower bound #[inline] pub fn lower(&self) -> F { self.0 } /// Returns the upper bound #[inline] pub fn upper(&self) -> F { self.1 } } impl<F : Float> Bounds<F> { /// Returns a uniform bound. /// /// This is maximum over the absolute values of the upper and lower bound. #[inline] pub fn uniform(&self) -> F { let &Bounds(lower, upper) = self; lower.abs().max(upper.abs()) } } impl<'a, F : Float> std::ops::Add<Self> for Bounds<F> { type Output = Self; #[inline] fn add(self, Bounds(l2, u2) : Self) -> Self::Output { let Bounds(l1, u1) = self; debug_assert!(l1 <= u1 && l2 <= u2); Bounds(l1 + l2, u1 + u2) } } impl<'a, F : Float> std::ops::Mul<Self> for Bounds<F> { type Output = Self; #[inline] fn mul(self, Bounds(l2, u2) : Self) -> Self::Output { let Bounds(l1, u1) = self; debug_assert!(l1 <= u1 && l2 <= u2); let a = l1 * l2; let b = u1 * u2; // The order may flip when negative numbers are involved, so need min/max Bounds(a.min(b), a.max(b)) } } impl<F : Float> std::iter::Product for Bounds<F> { #[inline] fn product<I>(mut iter: I) -> Self where I: Iterator<Item = Self> { match iter.next() { None => Bounds(F::ZERO, F::ZERO), Some(init) => iter.fold(init, |a, b| a*b) } } } impl<F : Float> Set<F> for Bounds<F> { fn contains(&self, item : &F) -> bool { let &Bounds(l, u) = self; debug_assert!(l <= u); l <= *item && *item <= u } } impl<F : Float> Bounds<F> { /// Calculate a common bound (glb, lub) for two bounds. #[inline] pub fn common(&self, &Bounds(l2, u2) : &Self) -> Self { let &Bounds(l1, u1) = self; debug_assert!(l1 <= u1 && l2 <= u2); Bounds(l1.min(l2), u1.max(u2)) } /// Indicates whether `Self` is a superset of the argument bound. #[inline] pub fn superset(&self, &Bounds(l2, u2) : &Self) -> bool { let &Bounds(l1, u1) = self; debug_assert!(l1 <= u1 && l2 <= u2); l1 <= l2 && u2 <= u1 } /// Returns the greatest bound contained by both argument bounds, if one exists. #[inline] pub fn glb(&self, &Bounds(l2, u2) : &Self) -> Option<Self> { let &Bounds(l1, u1) = self; debug_assert!(l1 <= u1 && l2 <= u2); let l = l1.max(l2); let u = u1.min(u2); if l < u { Some(Bounds(l, u)) } else { None } } } impl<F : Float> Aggregator for Bounds<F> { #[inline] fn aggregate<I>(&mut self, aggregates : I) where I : Iterator<Item=Self> { *self = aggregates.fold(*self, |a, b| a + b); } #[inline] fn summarise<'a, I>(&'a mut self, mut aggregates : I) where I : Iterator<Item=&'a Self> { *self = match aggregates.next() { None => Bounds(F::ZERO, F::ZERO), // No parts in this cube; the function is zero Some(&bounds) => { aggregates.fold(bounds, |a, b| a.common(b)) } } } #[inline] fn new() -> Self { Bounds(F::ZERO, F::ZERO) } }