Sat, 22 Oct 2022 22:28:04 +0300
Convert iteration utilities to GATs
/*! Norms, projections, etc. */ use crate::types::*; use std::ops::{Mul,MulAssign,Div,DivAssign,Add,Sub,AddAssign,SubAssign,Neg}; use serde::Serialize; //use std::iter::Sum; // // Dot products // /// Space with a defined dot product. pub trait Dot<U,F> { fn dot(&self, other : &U) -> F; } //self.iter().zip(other.iter()).map(|(&x,&y)| x*y).sum() // // Euclidean spaces // pub trait Euclidean<F : Float> : Sized + Dot<Self,F> + Mul<F, Output=<Self as Euclidean<F>>::Output> + MulAssign<F> + Div<F, Output=<Self as Euclidean<F>>::Output> + DivAssign<F> + Add<Self, Output=<Self as Euclidean<F>>::Output> + Sub<Self, Output=<Self as Euclidean<F>>::Output> + for<'b> Add<&'b Self, Output=<Self as Euclidean<F>>::Output> + for<'b> Sub<&'b Self, Output=<Self as Euclidean<F>>::Output> + AddAssign<Self> + for<'b> AddAssign<&'b Self> + SubAssign<Self> + for<'b> SubAssign<&'b Self> + Neg<Output=<Self as Euclidean<F>>::Output> { type Output : Euclidean<F>; /// Returns the origin of same dimensions as `self`. fn similar_origin(&self) -> <Self as Euclidean<F>>::Output; /// Calculate the square of the 2-norm. #[inline] fn norm2_squared(&self) -> F { self.dot(self) } /// Calculate the square of the 2-norm divided by 2. #[inline] fn norm2_squared_div2(&self) -> F { self.norm2_squared()/F::TWO } /// Calculate the 2-norm. #[inline] fn norm2(&self) -> F { self.norm2_squared().sqrt() } /// Calculate the 2-distance squared. fn dist2_squared(&self, other : &Self) -> F; /// Calculate the 2-distance. #[inline] fn dist2(&self, other : &Self) -> F { self.dist2_squared(other).sqrt() } /// Project to the 2-ball. #[inline] fn proj_ball2(mut self, ρ : F) -> Self { self.proj_ball2_mut(ρ); self } /// Project to the 2-ball in-place. #[inline] fn proj_ball2_mut(&mut self, ρ : F) { let r = self.norm2(); if r>ρ { *self *= ρ/r } } } /// Trait for [`Euclidean`] spaces with dimensions known at compile time. pub trait StaticEuclidean<F : Float> : Euclidean<F> { /// Returns the origin fn origin() -> <Self as Euclidean<F>>::Output; } // // Abstract norms // #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct L1; #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct L2; #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct Linfinity; #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct L21; #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct HuberL1<F : Float>(pub F); #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] pub struct HuberL21<F : Float>(pub F); pub trait Norm<F, Exponent> { /// Calculate the norm fn norm(&self, _p : Exponent) -> F; } /// Indicates that a [`Norm`] is dominated by another norm (`Exponent`) on `Elem` with the /// corresponding field `F`. pub trait Dominated<F : Num, Exponent, Elem> { /// Indicates the factor $c$ for the inequality $‖x‖ ≤ C ‖x‖_p$. fn norm_factor(&self, p : Exponent) -> F; /// Given a norm-value $‖x‖_p$, calculates $C‖x‖_p$ such that $‖x‖ ≤ C‖x‖_p$ #[inline] fn from_norm(&self, p_norm : F, p : Exponent) -> F { p_norm * self.norm_factor(p) } } pub trait Dist<F,Exponent> : Norm<F, Exponent> { /// Calculate the distance fn dist(&self, other : &Self, _p : Exponent) -> F; } pub trait Projection<F, Exponent> : Norm<F, Exponent> + Euclidean<F> where F : Float { /// Project to the norm-ball. fn proj_ball(mut self, ρ : F, q : Exponent) -> Self { self.proj_ball_mut(ρ, q); self } /// Project to the norm-ball in-place. fn proj_ball_mut(&mut self, ρ : F, _q : Exponent); } /*impl<F : Float, E : Euclidean<F>> Norm<F, L2> for E { #[inline] fn norm(&self, _p : L2) -> F { self.norm2() } fn dist(&self, other : &Self, _p : L2) -> F { self.dist2(other) } }*/ impl<F : Float, E : Euclidean<F> + Norm<F, L2>> Projection<F, L2> for E { #[inline] fn proj_ball(self, ρ : F, _p : L2) -> Self { self.proj_ball2(ρ) } #[inline] fn proj_ball_mut(&mut self, ρ : F, _p : L2) { self.proj_ball2_mut(ρ) } } impl<F : Float> HuberL1<F> { fn apply(self, xnsq : F) -> F { let HuberL1(γ) = self; let xn = xnsq.sqrt(); if γ == F::ZERO { xn } else { if xn > γ { xn-γ/F::TWO } else if xn<(-γ) { -xn-γ/F::TWO } else { xnsq/(F::TWO*γ) } } } } impl<F : Float, E : Euclidean<F>> Norm<F, HuberL1<F>> for E { fn norm(&self, huber : HuberL1<F>) -> F { huber.apply(self.norm2_squared()) } } impl<F : Float, E : Euclidean<F>> Dist<F, HuberL1<F>> for E { fn dist(&self, other : &Self, huber : HuberL1<F>) -> F { huber.apply(self.dist2_squared(other)) } } /* #[inline] pub fn mean<V>(x : V) -> V::Field where V : ValidArray { x.iter().sum()/x.len() } #[inline] pub fn proj_nonneg_mut<V>(x : &mut V) -> &mut V where V : ValidArray { x.iter_mut().for_each(|&mut p| if p < 0 { *p = 0 } ); x } */ // // 2,1-norm generic implementation // /* pub trait InnerVectors { type Item; type Iter : Iterator<Item=Self::Item>; fn inner_vectors(&self) -> &Self::Iter; } pub trait InnerVectorsMut : InnerVectors { type IterMut : Iterator<Item=Self::Item>; fn inner_vectors_mut(&self) -> &mut Self::Item; } impl<F : Float + Sum, T : InnerVectors> Norm<F, L21> for T where T::Item : Norm<F, L2> { fn norm(&self, _ : L21) -> F { self.inner_vectors().map(|t| t.norm(L2)).sum() } } impl<F : Float + Sum, T : InnerVectorsMut + Euclidean<F>> Projection<F, L21> for T where T::ItemMut : Projection<F, L2> { fn proj_ball_mut(&mut self, _ : L21) { self.inner_vectors_mut().for_each(|t| t.proj_ball_mut(L2)); } } */