Tue, 31 Dec 2024 10:57:13 -0500
Incomplete sketch of GEMV apply_add_mul
/*! Euclidean spaces. */ use std::ops::{Mul, MulAssign, Div, DivAssign, Add, Sub, AddAssign, SubAssign, Neg}; use crate::types::*; use crate::instance::Instance; use crate::norms::{HasDual, Reflexive}; /// Space (type) with Euclidean and vector space structure /// /// The type should implement vector space operations (addition, subtraction, scalar /// multiplication and scalar division) along with their assignment versions, as well /// as an inner product. pub trait Euclidean<F : Float> : HasDual<F, DualSpace=Self> + Reflexive<F> + Mul<F, Output=<Self as Euclidean<F>>::Output> + MulAssign<F> + Div<F, Output=<Self as Euclidean<F>>::Output> + DivAssign<F> + Add<Self, Output=<Self as Euclidean<F>>::Output> + Sub<Self, Output=<Self as Euclidean<F>>::Output> + for<'b> Add<&'b Self, Output=<Self as Euclidean<F>>::Output> + for<'b> Sub<&'b Self, Output=<Self as Euclidean<F>>::Output> + AddAssign<Self> + for<'b> AddAssign<&'b Self> + SubAssign<Self> + for<'b> SubAssign<&'b Self> + Neg<Output=<Self as Euclidean<F>>::Output> { type Output : Euclidean<F>; // Inner product fn dot<I : Instance<Self>>(&self, other : I) -> F; /// Calculate the square of the 2-norm, $\frac{1}{2}\\|x\\|_2^2$, where `self` is $x$. /// /// This is not automatically implemented to avoid imposing /// `for <'a> &'a Self : Instance<Self>` trait bound bloat. fn norm2_squared(&self) -> F; /// Calculate the square of the 2-norm divided by 2, $\frac{1}{2}\\|x\\|_2^2$, /// where `self` is $x$. #[inline] fn norm2_squared_div2(&self) -> F { self.norm2_squared()/F::TWO } /// Calculate the 2-norm $‖x‖_2$, where `self` is $x$. #[inline] fn norm2(&self) -> F { self.norm2_squared().sqrt() } /// Calculate the 2-distance squared $\\|x-y\\|_2^2$, where `self` is $x$. fn dist2_squared<I : Instance<Self>>(&self, y : I) -> F; /// Calculate the 2-distance $\\|x-y\\|_2$, where `self` is $x$. #[inline] fn dist2<I : Instance<Self>>(&self, y : I) -> F { self.dist2_squared(y).sqrt() } /// Projection to the 2-ball. #[inline] fn proj_ball2(mut self, ρ : F) -> Self { self.proj_ball2_mut(ρ); self } /// In-place projection to the 2-ball. #[inline] fn proj_ball2_mut(&mut self, ρ : F) { let r = self.norm2(); if r>ρ { *self *= ρ/r } } } /// Trait for [`Euclidean`] spaces with dimensions known at compile time. pub trait StaticEuclidean<F : Float> : Euclidean<F> { /// Returns the origin fn origin() -> <Self as Euclidean<F>>::Output; }