Sun, 19 Jan 2025 16:49:09 +0100
LogarithmicCap verbosity option
/*! This module provides various sets and traits for them. */ use std::ops::{RangeFull,RangeFrom,Range,RangeInclusive,RangeTo,RangeToInclusive}; use crate::types::*; use crate::loc::Loc; use crate::euclidean::Euclidean; use crate::instance::{Space, Instance}; use serde::Serialize; pub mod cube; pub use cube::Cube; /// Trait for arbitrary sets. The parameter `U` is the element type. pub trait Set<U> where U : Space { /// Check for element containment fn contains<I : Instance<U>>(&self, item : I) -> bool; } /// Additional ordering (besides [`PartialOrd`]) of a subfamily of sets: /// greatest lower bound and least upper bound. pub trait SetOrd : Sized { /// Returns the smallest set of same class contain both parameters. fn common(&self, other : &Self) -> Self; /// Returns the greatest set of same class contaied by n both parameter sets. fn intersect(&self, other : &Self) -> Option<Self>; } impl<U, const N : usize> Set<Loc<U, N>> for Cube<U,N> where U : Num + PartialOrd + Sized { fn contains<I : Instance<Loc<U, N>>>(&self, item : I) -> bool { self.0.iter().zip(item.ref_instance().iter()).all(|(s, x)| s.contains(x)) } } impl<U : Space> Set<U> for RangeFull { fn contains<I : Instance<U>>(&self, _item : I) -> bool { true } } macro_rules! impl_ranges { ($($range:ident),*) => { $( impl<U,Idx> Set<U> for $range<Idx> where Idx : PartialOrd<U>, U : PartialOrd<Idx> + Space, Idx : PartialOrd { #[inline] fn contains<I : Instance<U>>(&self, item : I) -> bool { item.eval(|x| $range::contains(&self, x)) } } )* } } impl_ranges!(RangeFrom,Range,RangeInclusive,RangeTo,RangeToInclusive); /// Halfspaces described by an orthogonal vector and an offset. /// /// The halfspace is $H = \\{ t v + a \mid a^⊤ v = 0 \\}$, where $v$ is the orthogonal /// vector and $t$ the offset. #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] pub struct Halfspace<A, F> where A : Euclidean<F>, F : Float { pub orthogonal : A, pub offset : F, } impl<A,F> Halfspace<A,F> where A : Euclidean<F>, F : Float { #[inline] pub fn new(orthogonal : A, offset : F) -> Self { Halfspace{ orthogonal : orthogonal, offset : offset } } } /// Trait for generating a halfspace spanned by another set `Self` of elements of type `U`. pub trait SpannedHalfspace<F> where F : Float { /// Type of the orthogonal vector describing the halfspace. type A : Euclidean<F>; /// Returns the halfspace spanned by this set. fn spanned_halfspace(&self) -> Halfspace<Self::A, F>; } // TODO: Gram-Schmidt for higher N. impl<F : Float> SpannedHalfspace<F> for [Loc<F, 1>; 2] { type A = Loc<F, 1>; fn spanned_halfspace(&self) -> Halfspace<Self::A, F> { let (x0, x1) = (self[0], self[1]); Halfspace::new(x1-x0, x0[0]) } } // TODO: Gram-Schmidt for higher N. impl<F : Float> SpannedHalfspace<F> for [Loc<F, 2>; 2] { type A = Loc<F, 2>; fn spanned_halfspace(&self) -> Halfspace<Self::A, F> { let (x0, x1) = (&self[0], &self[1]); let d = x1 - x0; let orthog = loc![d[1], -d[0]]; // We don't normalise for efficiency let offset = x0.dot(&orthog); Halfspace::new(orthog, offset) } } impl<A,F> Set<A> for Halfspace<A,F> where A : Euclidean<F>, F : Float, { #[inline] fn contains<I : Instance<A>>(&self, item : I) -> bool { self.orthogonal.dot(item) >= self.offset } } /// Polygons defined by `N` `Halfspace`s. #[derive(Clone,Copy,Debug,Eq,PartialEq)] pub struct NPolygon<A, F, const N : usize>(pub [Halfspace<A,F>; N]) where A : Euclidean<F>, F : Float; impl<A,F,const N : usize> Set<A> for NPolygon<A,F,N> where A : Euclidean<F>, F : Float, { fn contains<I : Instance<A>>(&self, item : I) -> bool { let r = item.ref_instance(); self.0.iter().all(|halfspace| halfspace.contains(r)) } }