Wed, 07 Dec 2022 06:57:26 +0200
README beautification
/*! This module provides various sets and traits for them. */ use std::ops::{RangeFull,RangeFrom,Range,RangeInclusive,RangeTo,RangeToInclusive}; use std::marker::PhantomData; use crate::types::*; use crate::loc::Loc; use crate::euclidean::Dot; use serde::Serialize; mod cube; pub use cube::Cube; /// Trait for arbitrary sets. The parameter `U` is the element type. pub trait Set<U> where U : ?Sized { /// Check for element containment fn contains(&self, item : &U) -> bool; } /// Additional ordering (besides [`PartialOrd`]) of a subfamily of sets: /// greatest lower bound and least upper bound. pub trait SetOrd : Sized { /// Returns the smallest set of same class contain both parameters. fn common(&self, other : &Self) -> Self; /// Returns the greatest set of same class contaied by n both parameter sets. fn intersect(&self, other : &Self) -> Option<Self>; } impl<U, const N : usize> Set<Loc<U, N>> for Cube<U,N> where U : Num + PartialOrd + Sized { fn contains(&self, item : &Loc<U, N>) -> bool { self.0.iter().zip(item.iter()).all(|(s, x)| s.contains(x)) } } impl<U> Set<U> for RangeFull { fn contains(&self, _item : &U) -> bool { true } } macro_rules! impl_ranges { ($($range:ident),*) => { $( impl<U,Idx> Set<U> for $range<Idx> where Idx : PartialOrd<U>, U : PartialOrd<Idx> + ?Sized, Idx : PartialOrd { #[inline] fn contains(&self, item : &U) -> bool { $range::contains(&self, item) } } )* } } impl_ranges!(RangeFrom,Range,RangeInclusive,RangeTo,RangeToInclusive); /// Halfspaces described by an orthogonal vector and an offset. /// /// The halfspace is $H = \\{ t v + a \mid a^⊤ v = 0 \\}$, where $v$ is the orthogonal /// vector and $t$ the offset. /// /// `U` is the element type, `F` the floating point number type, and `A` the type of the /// orthogonal (dual) vectors. They need implement [`Dot<U, F>`]. #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] pub struct Halfspace<A, F, U> where A : Dot<U, F>, F : Float { pub orthogonal : A, pub offset : F, _phantom : PhantomData<U>, } impl<A,F,U> Halfspace<A,F,U> where A : Dot<U,F>, F : Float { #[inline] pub fn new(orthogonal : A, offset : F) -> Self { Halfspace{ orthogonal : orthogonal, offset : offset, _phantom : PhantomData } } } /// Trait for generating a halfspace spanned by another set `Self` of elements of type `U`. pub trait SpannedHalfspace<F, U> where F : Float { /// Type of the orthogonal vector describing the halfspace. type A : Dot<U, F>; /// Returns the halfspace spanned by this set. fn spanned_halfspace(&self) -> Halfspace<Self::A, F, U>; } // TODO: Gram-Schmidt for higher N. impl<F : Float> SpannedHalfspace<F,Loc<F, 1>> for [Loc<F, 1>; 2] { type A = Loc<F, 1>; fn spanned_halfspace(&self) -> Halfspace<Self::A, F, Loc<F, 1>> { let (x0, x1) = (self[0], self[1]); Halfspace::new(x1-x0, x0[0]) } } // TODO: Gram-Schmidt for higher N. impl<F : Float> SpannedHalfspace<F,Loc<F, 2>> for [Loc<F, 2>; 2] { type A = Loc<F, 2>; fn spanned_halfspace(&self) -> Halfspace<Self::A, F, Loc<F, 2>> { let (x0, x1) = (&self[0], &self[1]); let d = x1 - x0; let orthog = loc![d[1], -d[0]]; // We don't normalise for efficiency let offset = x0.dot(&orthog); Halfspace::new(orthog, offset) } } impl<A,U,F> Set<U> for Halfspace<A,F,U> where A : Dot<U,F>, F : Float { #[inline] fn contains(&self, item : &U) -> bool { self.orthogonal.dot(item) >= self.offset } } /// Polygons defined by `N` `Halfspace`s. #[derive(Clone,Copy,Debug,Eq,PartialEq)] pub struct NPolygon<A, F, U, const N : usize>(pub [Halfspace<A,F,U>; N]) where A : Dot<U,F>, F : Float; impl<A,U,F,const N : usize> Set<U> for NPolygon<A,F,U,N> where A : Dot<U,F>, F : Float { fn contains(&self, item : &U) -> bool { self.0.iter().all(|halfspace| halfspace.contains(item)) } }