--- a/src/convex.rs Tue Dec 31 08:30:02 2024 -0500 +++ b/src/convex.rs Tue Dec 31 09:02:55 2024 -0500 @@ -2,8 +2,10 @@ Some convex analysis basics */ +use std::marker::PhantomData; use crate::types::*; use crate::mapping::{Mapping, Space}; +use crate::linops::IdOp; use crate::instance::{Instance, InstanceMut, DecompositionMut}; use crate::norms::*; @@ -11,16 +13,15 @@ /// /// TODO: should constrain `Mapping::Codomain` to implement a partial order, /// but this makes everything complicated with little benefit. -pub trait ConvexMapping<Domain : Space> : Mapping<Domain> +pub trait ConvexMapping<Domain : Space, F : Num = f64> : Mapping<Domain, Codomain = F> {} /// Trait for mappings with a Fenchel conjugate /// /// The conjugate type has to implement [`ConvexMapping`], but a `Conjugable` mapping need /// not be convex. -pub trait Conjugable<Domain : Space> : Mapping<Domain> { - type DualDomain : Space; - type Conjugate<'a> : ConvexMapping<Self::DualDomain> where Self : 'a; +pub trait Conjugable<Domain : HasDual<F>, F : Num = f64> : Mapping<Domain> { + type Conjugate<'a> : ConvexMapping<Domain::DualSpace, F> where Self : 'a; fn conjugate(&self) -> Self::Conjugate<'_>; } @@ -28,10 +29,13 @@ /// Trait for mappings with a Fenchel preconjugate /// /// In contrast to [`Conjugable`], the preconjugate need not implement [`ConvexMapping`], -/// but a `Preconjugable` mapping has be convex. -pub trait Preconjugable<Domain : Space> : ConvexMapping<Domain> { - type PredualDomain : Space; - type Preconjugate<'a> : Mapping<Self::PredualDomain> where Self : 'a; +/// but a `Preconjugable` mapping has to be convex. +pub trait Preconjugable<Domain, Predual, F : Num = f64> : ConvexMapping<Domain, F> +where + Domain : Space, + Predual : HasDual<F> +{ + type Preconjugate<'a> : Mapping<Predual> where Self : 'a; fn preconjugate(&self) -> Self::Preconjugate<'_>; } @@ -65,20 +69,13 @@ pub struct NormConjugate<F : Float, E : NormExponent>(NormMapping<F, E>); -impl<Domain, E, F> ConvexMapping<Domain> for NormMapping<F, E> +impl<Domain, E, F> ConvexMapping<Domain, F> for NormMapping<F, E> where Domain : Space, E : NormExponent, F : Float, - Self : Mapping<Domain, Codomain=F> {} - - -impl<Domain, E, F> ConvexMapping<Domain> for NormConjugate<F, E> -where - Domain : Space, - E : NormExponent, - F : Float, - Self : Mapping<Domain, Codomain=F> {} + Self : Mapping<Domain, Codomain=F> +{} impl<F, E, Domain> Mapping<Domain> for NormConjugate<F, E> @@ -98,20 +95,121 @@ } } +impl<Domain, E, F> ConvexMapping<Domain, F> for NormConjugate<F, E> +where + Domain : Space, + E : NormExponent, + F : Float, + Self : Mapping<Domain, Codomain=F> +{} + + +impl<E, F, Domain> Conjugable<Domain, F> for NormMapping<F, E> +where + E : HasDualExponent, + F : Float, + Domain : HasDual<F> + Norm<F, E> + Space, + <Domain as HasDual<F>>::DualSpace : Norm<F, E::DualExp> +{ + type Conjugate<'a> = NormConjugate<F, E::DualExp> where Self : 'a; + + fn conjugate(&self) -> Self::Conjugate<'_> { + NormConjugate(self.exponent.dual_exponent().as_mapping()) + } +} -impl<E, F, Domain> Conjugable<Domain> for NormMapping<F, E> -where - E : NormExponent + Clone, - F : Float, - Domain : Norm<F, E> + Space, -{ +/// The zero mapping +pub struct Zero<Domain : Space, F : Num>(PhantomData<(Domain, F)>); + +impl<Domain : Space, F : Num> Zero<Domain, F> { + pub fn new() -> Self { + Zero(PhantomData) + } +} + +impl<Domain : Space, F : Num> Mapping<Domain> for Zero<Domain, F> { + type Codomain = F; - type DualDomain = Domain; - type Conjugate<'a> = NormConjugate<F, E> where Self : 'a; + /// Compute the value of `self` at `x`. + fn apply<I : Instance<Domain>>(&self, _x : I) -> Self::Codomain { + F::ZERO + } +} + +impl<Domain : Space, F : Num> ConvexMapping<Domain, F> for Zero<Domain, F> { } + +impl<Domain : HasDual<F>, F : Float> Conjugable<Domain, F> for Zero<Domain, F> { + type Conjugate<'a> = ZeroIndicator<Domain::DualSpace, F> where Self : 'a; + + #[inline] fn conjugate(&self) -> Self::Conjugate<'_> { - NormConjugate(self.clone()) + ZeroIndicator::new() } } +impl<Domain, Predual, F : Float> Preconjugable<Domain, Predual, F> for Zero<Domain, F> +where + Domain : Space, + Predual : HasDual<F> +{ + type Preconjugate<'a> = ZeroIndicator<Predual, F> where Self : 'a; + + #[inline] + fn preconjugate(&self) -> Self::Preconjugate<'_> { + ZeroIndicator::new() + } +} + +impl<Domain : Space + Clone, F : Num> Prox<Domain> for Zero<Domain, F> { + type Prox<'a> = IdOp<Domain> where Self : 'a; + + #[inline] + fn prox_mapping(&self, _τ : Self::Codomain) -> Self::Prox<'_> { + IdOp::new() + } +} + + +/// The zero indicator +pub struct ZeroIndicator<Domain : Space, F : Num>(PhantomData<(Domain, F)>); + +impl<Domain : Space, F : Num> ZeroIndicator<Domain, F> { + pub fn new() -> Self { + ZeroIndicator(PhantomData) + } +} + +impl<Domain : Normed<F>, F : Float> Mapping<Domain> for ZeroIndicator<Domain, F> { + type Codomain = F; + + /// Compute the value of `self` at `x`. + fn apply<I : Instance<Domain>>(&self, x : I) -> Self::Codomain { + x.eval(|x̃| if x̃.is_zero() { F::ZERO } else { F::INFINITY }) + } +} + +impl<Domain : Normed<F>, F : Float> ConvexMapping<Domain, F> for ZeroIndicator<Domain, F> { } + +impl<Domain : HasDual<F>, F : Float> Conjugable<Domain, F> for ZeroIndicator<Domain, F> { + type Conjugate<'a> = Zero<Domain::DualSpace, F> where Self : 'a; + + #[inline] + fn conjugate(&self) -> Self::Conjugate<'_> { + Zero::new() + } +} + +impl<Domain, Predual, F : Float> Preconjugable<Domain, Predual, F> for ZeroIndicator<Domain, F> +where + Domain : Normed<F>, + Predual : HasDual<F> +{ + type Preconjugate<'a> = Zero<Predual, F> where Self : 'a; + + #[inline] + fn preconjugate(&self) -> Self::Preconjugate<'_> { + Zero::new() + } +}