8 |
8 |
9 // |
9 // |
10 // Abstract norms |
10 // Abstract norms |
11 // |
11 // |
12 |
12 |
|
13 /// An exponent for norms. |
|
14 /// |
|
15 // Just a collection of desirabl attributes for a marker type |
|
16 pub trait NormExponent : Copy + Send + Sync + 'static {} |
|
17 |
|
18 |
13 /// Exponent type for the 1-[`Norm`]. |
19 /// Exponent type for the 1-[`Norm`]. |
14 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
20 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
15 pub struct L1; |
21 pub struct L1; |
|
22 impl NormExponent for L1 {} |
16 |
23 |
17 /// Exponent type for the 2-[`Norm`]. |
24 /// Exponent type for the 2-[`Norm`]. |
18 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
25 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
19 pub struct L2; |
26 pub struct L2; |
|
27 impl NormExponent for L2 {} |
20 |
28 |
21 /// Exponent type for the ∞-[`Norm`]. |
29 /// Exponent type for the ∞-[`Norm`]. |
22 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
30 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
23 pub struct Linfinity; |
31 pub struct Linfinity; |
|
32 impl NormExponent for Linfinity {} |
24 |
33 |
25 /// Exponent type for 2,1-[`Norm`]. |
34 /// Exponent type for 2,1-[`Norm`]. |
26 /// (1-norm over a domain Ω, 2-norm of a vector at each point of the domain.) |
35 /// (1-norm over a domain Ω, 2-norm of a vector at each point of the domain.) |
27 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
36 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
28 pub struct L21; |
37 pub struct L21; |
|
38 impl NormExponent for L21 {} |
29 |
39 |
30 /// A Huber/Moreau–Yosida smoothed [`L1`] norm. (Not a norm itself.) |
40 /// A Huber/Moreau–Yosida smoothed [`L1`] norm. (Not a norm itself.) |
31 /// |
41 /// |
32 /// The parameter γ of this type is the smoothing factor. Zero means no smoothing, and higher |
42 /// The parameter γ of this type is the smoothing factor. Zero means no smoothing, and higher |
33 /// values more smoothing. Behaviour with γ < 0 is undefined. |
43 /// values more smoothing. Behaviour with γ < 0 is undefined. |
34 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
44 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
35 pub struct HuberL1<F : Float>(pub F); |
45 pub struct HuberL1<F : Float>(pub F); |
|
46 impl<F : Float> NormExponent for HuberL1<F> {} |
36 |
47 |
37 /// A Huber/Moreau–Yosida smoothed [`L21`] norm. (Not a norm itself.) |
48 /// A Huber/Moreau–Yosida smoothed [`L21`] norm. (Not a norm itself.) |
38 /// |
49 /// |
39 /// The parameter γ of this type is the smoothing factor. Zero means no smoothing, and higher |
50 /// The parameter γ of this type is the smoothing factor. Zero means no smoothing, and higher |
40 /// values more smoothing. Behaviour with γ < 0 is undefined. |
51 /// values more smoothing. Behaviour with γ < 0 is undefined. |
41 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
52 #[derive(Copy,Debug,Clone,Serialize,Eq,PartialEq)] |
42 pub struct HuberL21<F : Float>(pub F); |
53 pub struct HuberL21<F : Float>(pub F); |
|
54 impl<F : Float> NormExponent for HuberL21<F> {} |
|
55 |
43 |
56 |
44 /// A normed space (type) with exponent or other type `Exponent` for the norm. |
57 /// A normed space (type) with exponent or other type `Exponent` for the norm. |
45 /// |
58 /// |
46 /// Use as |
59 /// Use as |
47 /// ``` |
60 /// ``` |
49 /// # use alg_tools::loc::Loc; |
62 /// # use alg_tools::loc::Loc; |
50 /// let x = Loc([1.0, 2.0, 3.0]); |
63 /// let x = Loc([1.0, 2.0, 3.0]); |
51 /// |
64 /// |
52 /// println!("{}, {} {}", x.norm(L1), x.norm(L2), x.norm(Linfinity)) |
65 /// println!("{}, {} {}", x.norm(L1), x.norm(L2), x.norm(Linfinity)) |
53 /// ``` |
66 /// ``` |
54 pub trait Norm<F, Exponent> { |
67 pub trait Norm<F : Num, Exponent : NormExponent> { |
55 /// Calculate the norm. |
68 /// Calculate the norm. |
56 fn norm(&self, _p : Exponent) -> F; |
69 fn norm(&self, _p : Exponent) -> F; |
57 } |
70 } |
58 |
71 |
59 /// Indicates that the `Self`-[`Norm`] is dominated by the `Exponent`-`Norm` on the space |
72 /// Indicates that the `Self`-[`Norm`] is dominated by the `Exponent`-`Norm` on the space |
60 /// `Elem` with the corresponding field `F`. |
73 /// `Elem` with the corresponding field `F`. |
61 pub trait Dominated<F : Num, Exponent, Elem> { |
74 pub trait Dominated<F : Num, Exponent : NormExponent, Elem> { |
62 /// Indicates the factor $c$ for the inequality $‖x‖ ≤ C ‖x‖_p$. |
75 /// Indicates the factor $c$ for the inequality $‖x‖ ≤ C ‖x‖_p$. |
63 fn norm_factor(&self, p : Exponent) -> F; |
76 fn norm_factor(&self, p : Exponent) -> F; |
64 /// Given a norm-value $‖x‖_p$, calculates $C‖x‖_p$ such that $‖x‖ ≤ C‖x‖_p$ |
77 /// Given a norm-value $‖x‖_p$, calculates $C‖x‖_p$ such that $‖x‖ ≤ C‖x‖_p$ |
65 #[inline] |
78 #[inline] |
66 fn from_norm(&self, p_norm : F, p : Exponent) -> F { |
79 fn from_norm(&self, p_norm : F, p : Exponent) -> F { |
67 p_norm * self.norm_factor(p) |
80 p_norm * self.norm_factor(p) |
68 } |
81 } |
69 } |
82 } |
70 |
83 |
71 /// Trait for distances with respect to a norm. |
84 /// Trait for distances with respect to a norm. |
72 pub trait Dist<F,Exponent> : Norm<F, Exponent> { |
85 pub trait Dist<F : Num, Exponent : NormExponent> : Norm<F, Exponent> { |
73 /// Calculate the distance |
86 /// Calculate the distance |
74 fn dist(&self, other : &Self, _p : Exponent) -> F; |
87 fn dist(&self, other : &Self, _p : Exponent) -> F; |
75 } |
88 } |
76 |
89 |
77 /// Trait for Euclidean projections to the `Exponent`-[`Norm`]-ball. |
90 /// Trait for Euclidean projections to the `Exponent`-[`Norm`]-ball. |
82 /// # use alg_tools::loc::Loc; |
95 /// # use alg_tools::loc::Loc; |
83 /// let x = Loc([1.0, 2.0, 3.0]); |
96 /// let x = Loc([1.0, 2.0, 3.0]); |
84 /// |
97 /// |
85 /// println!("{:?}, {:?}", x.proj_ball(1.0, L2), x.proj_ball(0.5, Linfinity)); |
98 /// println!("{:?}, {:?}", x.proj_ball(1.0, L2), x.proj_ball(0.5, Linfinity)); |
86 /// ``` |
99 /// ``` |
87 pub trait Projection<F, Exponent> : Norm<F, Exponent> + Euclidean<F> where F : Float { |
100 pub trait Projection<F : Num, Exponent : NormExponent> : Norm<F, Exponent> + Euclidean<F> |
|
101 where F : Float { |
88 /// Projection of `self` to the `q`-norm-ball of radius ρ. |
102 /// Projection of `self` to the `q`-norm-ball of radius ρ. |
89 fn proj_ball(mut self, ρ : F, q : Exponent) -> Self { |
103 fn proj_ball(mut self, ρ : F, q : Exponent) -> Self { |
90 self.proj_ball_mut(ρ, q); |
104 self.proj_ball_mut(ρ, q); |
91 self |
105 self |
92 } |
106 } |