8 use serde::Serialize; |
8 use serde::Serialize; |
9 pub use crate::mapping::Apply; |
9 pub use crate::mapping::Apply; |
10 |
10 |
11 /// Trait for linear operators on `X`. |
11 /// Trait for linear operators on `X`. |
12 pub trait Linear<X> : Apply<X, Output=Self::Codomain> |
12 pub trait Linear<X> : Apply<X, Output=Self::Codomain> |
13 + for<'a> Apply<&'a X, Output=Self::Codomain> { |
13 + for<'a> Apply<&'a X, Output=Self::Codomain> |
|
14 + HasScalarField { |
14 type Codomain; |
15 type Codomain; |
15 } |
16 } |
16 |
17 |
17 /// Efficient in-place summation. |
18 /// Efficient in-place summation. |
18 #[replace_float_literals(F::cast_from(literal))] |
19 #[replace_float_literals(F::cast_from(literal))] |
19 pub trait AXPY<F : Num, X = Self> { |
20 pub trait AXPY<F : Num, X = Self> { |
20 /// Computes `y = βy + αx`, where `y` is `Self`. |
21 /// Computes `y = βy + αx`, where `y` is `Self`. |
21 fn axpy(&mut self, α : F, x : &X, β : F); |
22 fn axpy(&mut self, α : F, x : X, β : F); |
22 |
23 |
23 /// Copies `x` to `self`. |
24 /// Copies `x` to `self`. |
24 fn copy_from(&mut self, x : &X) { |
25 fn copy_from(&mut self, x : X) { |
25 self.axpy(1.0, x, 0.0) |
26 self.axpy(1.0, x, 0.0) |
26 } |
27 } |
27 |
28 |
28 /// Computes `y = αx`, where `y` is `Self`. |
29 /// Computes `y = αx`, where `y` is `Self`. |
29 fn scale_from(&mut self, α : F, x : &X) { |
30 fn scale_from(&mut self, α : F, x : X) { |
30 self.axpy(α, x, 0.0) |
31 self.axpy(α, x, 0.0) |
31 } |
32 } |
32 } |
33 } |
33 |
34 |
34 /// Efficient in-place application for [`Linear`] operators. |
35 /// Efficient in-place application for [`Linear`] operators. |
35 #[replace_float_literals(F::cast_from(literal))] |
36 #[replace_float_literals(F::cast_from(literal))] |
36 pub trait GEMV<F : Num, X, Y = <Self as Linear<X>>::Codomain> : Linear<X> { |
37 pub trait GEMV<F : Num, X, Y = <Self as Apply<X>>::Output> : Apply<X> { |
37 /// Computes `y = αAx + βy`, where `A` is `Self`. |
38 /// Computes `y = αAx + βy`, where `A` is `Self`. |
38 fn gemv(&self, y : &mut Y, α : F, x : &X, β : F); |
39 fn gemv(&self, y : &mut Y, α : F, x : X, β : F); |
39 |
40 |
40 /// Computes `y = Ax`, where `A` is `Self` |
41 /// Computes `y = Ax`, where `A` is `Self` |
41 fn apply_mut(&self, y : &mut Y, x : &X){ |
42 fn apply_mut(&self, y : &mut Y, x : X){ |
42 self.gemv(y, 1.0, x, 0.0) |
43 self.gemv(y, 1.0, x, 0.0) |
43 } |
44 } |
44 |
45 |
45 /// Computes `y += Ax`, where `A` is `Self` |
46 /// Computes `y += Ax`, where `A` is `Self` |
46 fn apply_add(&self, y : &mut Y, x : &X){ |
47 fn apply_add(&self, y : &mut Y, x : X){ |
47 self.gemv(y, 1.0, x, 1.0) |
48 self.gemv(y, 1.0, x, 1.0) |
48 } |
49 } |
49 } |
50 } |
50 |
51 |
51 |
52 |
52 /// Bounded linear operators |
53 /// Bounded linear operators |
53 pub trait BoundedLinear<X> : Linear<X> { |
54 pub trait BoundedLinear<X> : Linear<X> { |
54 type FloatType : Float; |
|
55 /// A bound on the operator norm $\|A\|$ for the linear operator $A$=`self`. |
55 /// A bound on the operator norm $\|A\|$ for the linear operator $A$=`self`. |
56 /// This is not expected to be the norm, just any bound on it that can be |
56 /// This is not expected to be the norm, just any bound on it that can be |
57 /// reasonably implemented. |
57 /// reasonably implemented. |
58 fn opnorm_bound(&self) -> Self::FloatType; |
58 fn opnorm_bound(&self) -> Self::Field; |
59 } |
59 } |
60 |
60 |
61 // Linear operator application into mutable target. The [`AsRef`] bound |
61 // Linear operator application into mutable target. The [`AsRef`] bound |
62 // is used to guarantee compatibility with `Yʹ` and `Self::Codomain`; |
62 // is used to guarantee compatibility with `Yʹ` and `Self::Codomain`; |
63 // the former is assumed to be e.g. a view into the latter. |
63 // the former is assumed to be e.g. a view into the latter. |
87 /// such that its adjoint $(A\_\*)^\*=A$. The space `X` is the domain of the `Self` |
87 /// such that its adjoint $(A\_\*)^\*=A$. The space `X` is the domain of the `Self` |
88 /// operator. The space `Ypre` is the predual of its codomain, and should be the |
88 /// operator. The space `Ypre` is the predual of its codomain, and should be the |
89 /// domain of the adjointed operator. `Self::Preadjoint` should be |
89 /// domain of the adjointed operator. `Self::Preadjoint` should be |
90 /// [`Adjointable`]`<'a,Ypre,X>`. |
90 /// [`Adjointable`]`<'a,Ypre,X>`. |
91 pub trait Preadjointable<X,Ypre> : Linear<X> { |
91 pub trait Preadjointable<X,Ypre> : Linear<X> { |
92 type PreadjointCodomain; |
92 type PreadjointCodomain : HasScalarField<Field=Self::Field>; |
93 type Preadjoint<'a> : Adjointable<Ypre, X, Codomain=Self::PreadjointCodomain> where Self : 'a; |
93 type Preadjoint<'a> : Adjointable<Ypre, X, Codomain=Self::PreadjointCodomain> where Self : 'a; |
94 |
94 |
95 /// Form the preadjoint operator of `self`. |
95 /// Form the preadjoint operator of `self`. |
96 fn preadjoint(&self) -> Self::Preadjoint<'_>; |
96 fn preadjoint(&self) -> Self::Preadjoint<'_>; |
97 } |
97 } |
98 |
98 |
99 /// Adjointable operators $A: X → Y$ on between reflexive spaces $X$ and $Y$. |
99 /// Adjointable operators $A: X → Y$ on between reflexive spaces $X$ and $Y$. |
100 pub trait SimplyAdjointable<X> : Adjointable<X,<Self as Linear<X>>::Codomain> {} |
100 pub trait SimplyAdjointable<X> : Adjointable<X,<Self as Linear<X>>::Codomain> {} |
101 impl<'a,X,T> SimplyAdjointable<X> for T where T : Adjointable<X,<Self as Linear<X>>::Codomain> {} |
101 impl<'a,X,T> SimplyAdjointable<X> for T where T : Adjointable<X,<Self as Linear<X>>::Codomain> {} |
102 |
102 |
103 /// The identity operator |
103 /// The identity operator on `X` with scalar field `F`. |
104 #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] |
104 #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] |
105 pub struct IdOp<X> (PhantomData<X>); |
105 pub struct IdOp<X, F : Num> (PhantomData<(X, F)>); |
106 |
106 |
107 impl<X> IdOp<X> { |
107 impl<X, F : Num> HasScalarField for IdOp<X, F> { |
108 fn new() -> IdOp<X> { IdOp(PhantomData) } |
108 type Field = F; |
109 } |
109 } |
110 |
110 |
111 impl<X> Apply<X> for IdOp<X> { |
111 impl<X, F : Num> IdOp<X, F> { |
|
112 fn new() -> IdOp<X, F> { IdOp(PhantomData) } |
|
113 } |
|
114 |
|
115 impl<X, F : Num, T : CloneIfNeeded<X>> Apply<T> for IdOp<X, F> { |
112 type Output = X; |
116 type Output = X; |
113 |
117 |
114 fn apply(&self, x : X) -> X { |
118 fn apply(&self, x : T) -> X { |
115 x |
119 x.clone_if_needed() |
116 } |
120 } |
117 } |
121 } |
118 |
122 |
119 impl<'a, X> Apply<&'a X> for IdOp<X> where X : Clone { |
123 impl<X : Clone, F : Num> Linear<X> for IdOp<X, F> { |
120 type Output = X; |
|
121 |
|
122 fn apply(&self, x : &'a X) -> X { |
|
123 x.clone() |
|
124 } |
|
125 } |
|
126 |
|
127 impl<X> Linear<X> for IdOp<X> where X : Clone { |
|
128 type Codomain = X; |
124 type Codomain = X; |
129 } |
125 } |
130 |
126 |
131 |
|
132 #[replace_float_literals(F::cast_from(literal))] |
127 #[replace_float_literals(F::cast_from(literal))] |
133 impl<F : Num, X, Y> GEMV<F, X, Y> for IdOp<X> where Y : AXPY<F, X>, X : Clone { |
128 impl<F : Num, X : Clone, Y> GEMV<F, X, Y> for IdOp<X, F> where Y : AXPY<F, X> { |
134 // Computes `y = αAx + βy`, where `A` is `Self`. |
129 // Computes `y = αAx + βy`, where `A` is `Self`. |
135 fn gemv(&self, y : &mut Y, α : F, x : &X, β : F) { |
130 fn gemv(&self, y : &mut Y, α : F, x : X, β : F) { |
136 y.axpy(α, x, β) |
131 y.axpy(α, x, β) |
137 } |
132 } |
138 |
133 |
139 fn apply_mut(&self, y : &mut Y, x : &X){ |
134 fn apply_mut(&self, y : &mut Y, x : X){ |
140 y.copy_from(x); |
135 y.copy_from(x); |
141 } |
136 } |
142 } |
137 } |
143 |
138 |
144 impl<X> BoundedLinear<X> for IdOp<X> where X : Clone { |
139 impl<X, F : Num> BoundedLinear<X> for IdOp<X, F> where X : Clone { |
145 type FloatType = float; |
140 fn opnorm_bound(&self) -> F { F::ONE } |
146 fn opnorm_bound(&self) -> float { 1.0 } |
|
147 } |
141 } |
148 |
142 |
149 impl<X> Adjointable<X,X> for IdOp<X> where X : Clone { |
143 impl<X, F : Num> Adjointable<X,X> for IdOp<X, F> where X : Clone + HasScalarField<Field=F> { |
150 type AdjointCodomain=X; |
144 type AdjointCodomain=X; |
151 type Adjoint<'a> = IdOp<X> where X : 'a; |
145 type Adjoint<'a> = IdOp<X, F> where X : 'a; |
152 fn adjoint(&self) -> Self::Adjoint<'_> { IdOp::new() } |
146 fn adjoint(&self) -> Self::Adjoint<'_> { IdOp::new() } |
153 } |
147 } |
154 |
148 |