|
1 /*! |
|
2 Some convex analysis basics |
|
3 */ |
|
4 |
|
5 use std::marker::PhantomData; |
|
6 use crate::types::*; |
|
7 use crate::mapping::{Mapping, Space}; |
|
8 use crate::linops::IdOp; |
|
9 use crate::instance::{Instance, InstanceMut, DecompositionMut}; |
|
10 use crate::operator_arithmetic::{Constant, Weighted}; |
|
11 use crate::norms::*; |
|
12 |
|
13 /// Trait for convex mappings. Has no features, just serves as a constraint |
|
14 /// |
|
15 /// TODO: should constrain `Mapping::Codomain` to implement a partial order, |
|
16 /// but this makes everything complicated with little benefit. |
|
17 pub trait ConvexMapping<Domain : Space, F : Num = f64> : Mapping<Domain, Codomain = F> |
|
18 {} |
|
19 |
|
20 /// Trait for mappings with a Fenchel conjugate |
|
21 /// |
|
22 /// The conjugate type has to implement [`ConvexMapping`], but a `Conjugable` mapping need |
|
23 /// not be convex. |
|
24 pub trait Conjugable<Domain : HasDual<F>, F : Num = f64> : Mapping<Domain> { |
|
25 type Conjugate<'a> : ConvexMapping<Domain::DualSpace, F> where Self : 'a; |
|
26 |
|
27 fn conjugate(&self) -> Self::Conjugate<'_>; |
|
28 } |
|
29 |
|
30 /// Trait for mappings with a Fenchel preconjugate |
|
31 /// |
|
32 /// In contrast to [`Conjugable`], the preconjugate need not implement [`ConvexMapping`], |
|
33 /// but a `Preconjugable` mapping has to be convex. |
|
34 pub trait Preconjugable<Domain, Predual, F : Num = f64> : ConvexMapping<Domain, F> |
|
35 where |
|
36 Domain : Space, |
|
37 Predual : HasDual<F> |
|
38 { |
|
39 type Preconjugate<'a> : Mapping<Predual> where Self : 'a; |
|
40 |
|
41 fn preconjugate(&self) -> Self::Preconjugate<'_>; |
|
42 } |
|
43 |
|
44 /// Trait for mappings with a proximap map |
|
45 /// |
|
46 /// The conjugate type has to implement [`ConvexMapping`], but a `Conjugable` mapping need |
|
47 /// not be convex. |
|
48 pub trait Prox<Domain : Space> : Mapping<Domain> { |
|
49 type Prox<'a> : Mapping<Domain, Codomain=Domain> where Self : 'a; |
|
50 |
|
51 /// Returns a proximal mapping with weight τ |
|
52 fn prox_mapping(&self, τ : Self::Codomain) -> Self::Prox<'_>; |
|
53 |
|
54 /// Calculate the proximal mapping with weight τ |
|
55 fn prox<I : Instance<Domain>>(&self, τ : Self::Codomain, z : I) -> Domain { |
|
56 self.prox_mapping(τ).apply(z) |
|
57 } |
|
58 |
|
59 /// Calculate the proximal mapping with weight τ in-place |
|
60 fn prox_mut<'b>(&self, τ : Self::Codomain, y : &'b mut Domain) |
|
61 where |
|
62 &'b mut Domain : InstanceMut<Domain>, |
|
63 Domain:: Decomp : DecompositionMut<Domain>, |
|
64 for<'a> &'a Domain : Instance<Domain>, |
|
65 { |
|
66 *y = self.prox(τ, &*y); |
|
67 } |
|
68 } |
|
69 |
|
70 |
|
71 /// Constraint to the unit ball of the norm described by `E`. |
|
72 pub struct NormConstraint<F : Float, E : NormExponent> { |
|
73 radius : F, |
|
74 norm : NormMapping<F, E>, |
|
75 } |
|
76 |
|
77 impl<Domain, E, F> ConvexMapping<Domain, F> for NormMapping<F, E> |
|
78 where |
|
79 Domain : Space, |
|
80 E : NormExponent, |
|
81 F : Float, |
|
82 Self : Mapping<Domain, Codomain=F> |
|
83 {} |
|
84 |
|
85 |
|
86 impl<F, E, Domain> Mapping<Domain> for NormConstraint<F, E> |
|
87 where |
|
88 Domain : Space + Norm<F, E>, |
|
89 F : Float, |
|
90 E : NormExponent, |
|
91 { |
|
92 type Codomain = F; |
|
93 |
|
94 fn apply<I : Instance<Domain>>(&self, d : I) -> F { |
|
95 if d.eval(|x| x.norm(self.norm.exponent)) <= self.radius { |
|
96 F::ZERO |
|
97 } else { |
|
98 F::INFINITY |
|
99 } |
|
100 } |
|
101 } |
|
102 |
|
103 impl<Domain, E, F> ConvexMapping<Domain, F> for NormConstraint<F, E> |
|
104 where |
|
105 Domain : Space, |
|
106 E : NormExponent, |
|
107 F : Float, |
|
108 Self : Mapping<Domain, Codomain=F> |
|
109 {} |
|
110 |
|
111 |
|
112 impl<E, F, Domain> Conjugable<Domain, F> for NormMapping<F, E> |
|
113 where |
|
114 E : HasDualExponent, |
|
115 F : Float, |
|
116 Domain : HasDual<F> + Norm<F, E> + Space, |
|
117 <Domain as HasDual<F>>::DualSpace : Norm<F, E::DualExp> |
|
118 { |
|
119 type Conjugate<'a> = NormConstraint<F, E::DualExp> where Self : 'a; |
|
120 |
|
121 fn conjugate(&self) -> Self::Conjugate<'_> { |
|
122 NormConstraint { |
|
123 radius : F::ONE, |
|
124 norm : self.exponent.dual_exponent().as_mapping() |
|
125 } |
|
126 } |
|
127 } |
|
128 |
|
129 impl<C, E, F, Domain> Conjugable<Domain, F> for Weighted<NormMapping<F, E>, C> |
|
130 where |
|
131 C : Constant<Type = F>, |
|
132 E : HasDualExponent, |
|
133 F : Float, |
|
134 Domain : HasDual<F> + Norm<F, E> + Space, |
|
135 <Domain as HasDual<F>>::DualSpace : Norm<F, E::DualExp> |
|
136 { |
|
137 type Conjugate<'a> = NormConstraint<F, E::DualExp> where Self : 'a; |
|
138 |
|
139 fn conjugate(&self) -> Self::Conjugate<'_> { |
|
140 NormConstraint { |
|
141 radius : self.weight.value(), |
|
142 norm : self.base_fn.exponent.dual_exponent().as_mapping() |
|
143 } |
|
144 } |
|
145 } |
|
146 |
|
147 impl<Domain, E, F> Prox<Domain> for NormConstraint<F, E> |
|
148 where |
|
149 Domain : Space + Norm<F, E>, |
|
150 E : NormExponent, |
|
151 F : Float, |
|
152 NormProjection<F, E> : Mapping<Domain, Codomain=Domain>, |
|
153 { |
|
154 type Prox<'a> = NormProjection<F, E> where Self : 'a; |
|
155 |
|
156 #[inline] |
|
157 fn prox_mapping(&self, _τ : Self::Codomain) -> Self::Prox<'_> { |
|
158 assert!(self.radius >= F::ZERO); |
|
159 NormProjection{ radius : self.radius, exponent : self.norm.exponent } |
|
160 } |
|
161 } |
|
162 |
|
163 /// Projection to the unit ball of the norm described by `E`. |
|
164 pub struct NormProjection<F : Float, E : NormExponent> { |
|
165 radius : F, |
|
166 exponent : E, |
|
167 } |
|
168 |
|
169 /* |
|
170 impl<F, Domain> Mapping<Domain> for NormProjection<F, L2> |
|
171 where |
|
172 Domain : Space + Euclidean<F> + std::ops::MulAssign<F>, |
|
173 F : Float, |
|
174 { |
|
175 type Codomain = Domain; |
|
176 |
|
177 fn apply<I : Instance<Domain>>(&self, d : I) -> Domain { |
|
178 d.own().proj_ball2(self.radius) |
|
179 } |
|
180 } |
|
181 */ |
|
182 |
|
183 impl<F, E, Domain> Mapping<Domain> for NormProjection<F, E> |
|
184 where |
|
185 Domain : Space + Projection<F, E>, |
|
186 F : Float, |
|
187 E : NormExponent, |
|
188 { |
|
189 type Codomain = Domain; |
|
190 |
|
191 fn apply<I : Instance<Domain>>(&self, d : I) -> Domain { |
|
192 d.own().proj_ball(self.radius, self.exponent) |
|
193 } |
|
194 } |
|
195 |
|
196 |
|
197 /// The zero mapping |
|
198 pub struct Zero<Domain : Space, F : Num>(PhantomData<(Domain, F)>); |
|
199 |
|
200 impl<Domain : Space, F : Num> Zero<Domain, F> { |
|
201 pub fn new() -> Self { |
|
202 Zero(PhantomData) |
|
203 } |
|
204 } |
|
205 |
|
206 impl<Domain : Space, F : Num> Mapping<Domain> for Zero<Domain, F> { |
|
207 type Codomain = F; |
|
208 |
|
209 /// Compute the value of `self` at `x`. |
|
210 fn apply<I : Instance<Domain>>(&self, _x : I) -> Self::Codomain { |
|
211 F::ZERO |
|
212 } |
|
213 } |
|
214 |
|
215 impl<Domain : Space, F : Num> ConvexMapping<Domain, F> for Zero<Domain, F> { } |
|
216 |
|
217 |
|
218 impl<Domain : HasDual<F>, F : Float> Conjugable<Domain, F> for Zero<Domain, F> { |
|
219 type Conjugate<'a> = ZeroIndicator<Domain::DualSpace, F> where Self : 'a; |
|
220 |
|
221 #[inline] |
|
222 fn conjugate(&self) -> Self::Conjugate<'_> { |
|
223 ZeroIndicator::new() |
|
224 } |
|
225 } |
|
226 |
|
227 impl<Domain, Predual, F : Float> Preconjugable<Domain, Predual, F> for Zero<Domain, F> |
|
228 where |
|
229 Domain : Space, |
|
230 Predual : HasDual<F> |
|
231 { |
|
232 type Preconjugate<'a> = ZeroIndicator<Predual, F> where Self : 'a; |
|
233 |
|
234 #[inline] |
|
235 fn preconjugate(&self) -> Self::Preconjugate<'_> { |
|
236 ZeroIndicator::new() |
|
237 } |
|
238 } |
|
239 |
|
240 impl<Domain : Space + Clone, F : Num> Prox<Domain> for Zero<Domain, F> { |
|
241 type Prox<'a> = IdOp<Domain> where Self : 'a; |
|
242 |
|
243 #[inline] |
|
244 fn prox_mapping(&self, _τ : Self::Codomain) -> Self::Prox<'_> { |
|
245 IdOp::new() |
|
246 } |
|
247 } |
|
248 |
|
249 |
|
250 /// The zero indicator |
|
251 pub struct ZeroIndicator<Domain : Space, F : Num>(PhantomData<(Domain, F)>); |
|
252 |
|
253 impl<Domain : Space, F : Num> ZeroIndicator<Domain, F> { |
|
254 pub fn new() -> Self { |
|
255 ZeroIndicator(PhantomData) |
|
256 } |
|
257 } |
|
258 |
|
259 impl<Domain : Normed<F>, F : Float> Mapping<Domain> for ZeroIndicator<Domain, F> { |
|
260 type Codomain = F; |
|
261 |
|
262 /// Compute the value of `self` at `x`. |
|
263 fn apply<I : Instance<Domain>>(&self, x : I) -> Self::Codomain { |
|
264 x.eval(|x̃| if x̃.is_zero() { F::ZERO } else { F::INFINITY }) |
|
265 } |
|
266 } |
|
267 |
|
268 impl<Domain : Normed<F>, F : Float> ConvexMapping<Domain, F> for ZeroIndicator<Domain, F> { } |
|
269 |
|
270 impl<Domain : HasDual<F>, F : Float> Conjugable<Domain, F> for ZeroIndicator<Domain, F> { |
|
271 type Conjugate<'a> = Zero<Domain::DualSpace, F> where Self : 'a; |
|
272 |
|
273 #[inline] |
|
274 fn conjugate(&self) -> Self::Conjugate<'_> { |
|
275 Zero::new() |
|
276 } |
|
277 } |
|
278 |
|
279 impl<Domain, Predual, F : Float> Preconjugable<Domain, Predual, F> for ZeroIndicator<Domain, F> |
|
280 where |
|
281 Domain : Normed<F>, |
|
282 Predual : HasDual<F> |
|
283 { |
|
284 type Preconjugate<'a> = Zero<Predual, F> where Self : 'a; |
|
285 |
|
286 #[inline] |
|
287 fn preconjugate(&self) -> Self::Preconjugate<'_> { |
|
288 Zero::new() |
|
289 } |
|
290 } |