Tue, 25 Oct 2022 23:05:40 +0300
Added NormExponent trait for exponents of norms
0 | 1 | |
2 | use std::collections::BinaryHeap; | |
3 | use std::cmp::{PartialOrd,Ord,Ordering,Ordering::*,max}; | |
4 | use std::rc::Rc; | |
5 | use std::marker::PhantomData; | |
6 | use crate::types::*; | |
5 | 7 | use crate::nanleast::NaNLeast; |
8 | use crate::sets::Cube; | |
0 | 9 | use super::support::*; |
10 | use super::bt::*; | |
11 | use super::aggregator::*; | |
12 | ||
13 | /// Trait for sorting [`Aggregator`]s for [`BT`] refinement. | |
14 | /// | |
5 | 15 | /// The sorting involves two sorting keys, the “upper” and the “lower” key. Any [`BT`] nodes |
0 | 16 | /// with upper key less the lower key of another are discarded from the refinement process. |
5 | 17 | /// Nodes with the highest upper sorting key are picked for refinement. |
0 | 18 | pub trait AggregatorSorting { |
19 | // Priority | |
20 | type Agg : Aggregator; | |
21 | type Sort : Ord + Copy + std::fmt::Debug; | |
22 | ||
23 | /// Returns lower sorting key | |
24 | fn sort_lower(aggregator : &Self::Agg) -> Self::Sort; | |
25 | ||
26 | /// Returns upper sorting key | |
27 | fn sort_upper(aggregator : &Self::Agg) -> Self::Sort; | |
28 | ||
5 | 29 | /// Returns a sorting key that is less than any other sorting key. |
0 | 30 | fn bottom() -> Self::Sort; |
31 | } | |
32 | ||
33 | /// An [`AggregatorSorting`] for [`Bounds`], using the upper/lower bound as the upper/lower key. | |
34 | /// | |
35 | /// See [`LowerBoundSorting`] for the opposite ordering. | |
36 | pub struct UpperBoundSorting<F : Float>(PhantomData<F>); | |
37 | ||
38 | /// An [`AggregatorSorting`] for [`Bounds`], using the upper/lower bound as the lower/upper key. | |
39 | /// | |
40 | /// See [`UpperBoundSorting`] for the opposite ordering. | |
41 | pub struct LowerBoundSorting<F : Float>(PhantomData<F>); | |
42 | ||
43 | impl<F : Float> AggregatorSorting for UpperBoundSorting<F> { | |
44 | type Agg = Bounds<F>; | |
45 | type Sort = NaNLeast<F>; | |
46 | ||
47 | #[inline] | |
48 | fn sort_lower(aggregator : &Bounds<F>) -> Self::Sort { NaNLeast(aggregator.lower()) } | |
49 | ||
50 | #[inline] | |
51 | fn sort_upper(aggregator : &Bounds<F>) -> Self::Sort { NaNLeast(aggregator.upper()) } | |
52 | ||
53 | #[inline] | |
54 | fn bottom() -> Self::Sort { NaNLeast(F::NEG_INFINITY) } | |
55 | } | |
56 | ||
57 | ||
58 | impl<F : Float> AggregatorSorting for LowerBoundSorting<F> { | |
59 | type Agg = Bounds<F>; | |
60 | type Sort = NaNLeast<F>; | |
61 | ||
62 | #[inline] | |
63 | fn sort_upper(aggregator : &Bounds<F>) -> Self::Sort { NaNLeast(-aggregator.lower()) } | |
64 | ||
65 | #[inline] | |
66 | fn sort_lower(aggregator : &Bounds<F>) -> Self::Sort { NaNLeast(-aggregator.upper()) } | |
67 | ||
68 | #[inline] | |
69 | fn bottom() -> Self::Sort { NaNLeast(F::NEG_INFINITY) } | |
70 | } | |
71 | ||
5 | 72 | /// Return type of [`Refiner::refine`]. |
73 | /// | |
74 | /// The parameter `R` is the result type of the refiner acting on an [`Aggregator`] of type `A`. | |
0 | 75 | pub enum RefinerResult<A : Aggregator, R> { |
5 | 76 | /// Indicates an insufficiently refined state: the [`BT`] needs to be further refined. |
0 | 77 | NeedRefinement, |
78 | /// Indicates a certain result `R`, stop refinement immediately. | |
79 | Certain(R), | |
80 | /// Indicates an uncertain result: continue refinement until candidates have been exhausted | |
81 | /// or a certain result found. | |
82 | Uncertain(A, R) | |
83 | } | |
84 | ||
85 | use RefinerResult::*; | |
86 | ||
5 | 87 | /// A `Refiner` is used to search a [`BT`], refining the subdivision when necessary. |
88 | /// | |
89 | /// The search is performed by [`BTSearch::search_and_refine`]. | |
90 | /// The `Refiner` is used to determine whether an [`Aggregator`] `A` stored in the [`BT`] is | |
91 | /// sufficiently refined within a [`Cube`], and in such a case, produce a desired result (e.g. | |
92 | /// a maximum value of a function). | |
0 | 93 | pub trait Refiner<F : Float, A, G, const N : usize> |
94 | where F : Num, | |
95 | A : Aggregator, | |
96 | G : SupportGenerator<F, N> { | |
97 | ||
5 | 98 | /// The result type of the refiner |
0 | 99 | type Result : std::fmt::Debug; |
5 | 100 | /// The sorting to be employed by [`BTSearch::search_and_refine`] on node aggregators |
101 | /// to detemrine node priority. | |
0 | 102 | type Sorting : AggregatorSorting<Agg = A>; |
103 | ||
5 | 104 | /// Determines whether `aggregator` is sufficiently refined within `domain`. |
105 | /// | |
106 | /// If the aggregator is sufficiently refined that the desired `Self::Result` can be produced, | |
107 | /// a [`RefinerResult`]`::Certain` or `Uncertain` should be returned, depending on | |
108 | /// the confidence of the solution. In the uncertain case an improved aggregator should also | |
109 | /// be included. If the result cannot be produced, `NeedRefinement` should be | |
110 | /// returned. | |
111 | /// | |
112 | /// For example, if the refiner is used to minimise a function presented by the `BT`, | |
113 | /// an `Uncertain` result can be used to return a local maximum of the function on `domain` | |
114 | /// The result can be claimed `Certain` if it is a global maximum. In that case the | |
115 | /// refinment will stop immediately. A `NeedRefinement` result indicates that the `aggregator` | |
116 | /// and/or `domain` are not sufficiently refined to compute a lcoal maximum of sufficient | |
117 | /// quality. | |
118 | /// | |
119 | /// The vector `data` stored all the data of the [`BT`] in the node corresponding to `domain`. | |
120 | /// The `generator` can be used to convert `data` into [`Support`]s. The parameter `step` | |
121 | /// counts the calls to `refine`, and can be used to stop the refinement when a maximum | |
122 | /// number of steps is reached. | |
0 | 123 | fn refine( |
124 | &self, | |
125 | aggregator : &A, | |
126 | domain : &Cube<F, N>, | |
127 | data : &Vec<G::Id>, | |
128 | generator : &G, | |
129 | step : usize, | |
130 | ) -> RefinerResult<A, Self::Result>; | |
131 | } | |
132 | ||
133 | /// Structure for tracking the refinement process in a [`BinaryHeap`]. | |
134 | struct RefinementInfo<'a, F, D, A, S, RResult, const N : usize, const P : usize> | |
135 | where F : Float, | |
136 | D : 'static +, | |
137 | A : Aggregator, | |
138 | S : AggregatorSorting<Agg = A> { | |
139 | cube : Cube<F, N>, | |
140 | node : &'a mut Node<F, D, A, N, P>, | |
141 | refiner_info : Option<(A, RResult)>, | |
142 | sorting : PhantomData<S>, | |
143 | } | |
144 | ||
145 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> | |
146 | RefinementInfo<'a, F, D, A, S, RResult, N, P> | |
147 | where F : Float, | |
148 | D : 'static, | |
149 | A : Aggregator, | |
150 | S : AggregatorSorting<Agg = A> { | |
151 | ||
152 | #[inline] | |
153 | fn aggregator(&self) -> &A { | |
154 | match self.refiner_info { | |
155 | Some((ref agg, _)) => agg, | |
156 | None => &self.node.aggregator, | |
157 | } | |
158 | } | |
159 | ||
160 | #[inline] | |
161 | fn sort_lower(&self) -> S::Sort { | |
162 | S::sort_lower(self.aggregator()) | |
163 | } | |
164 | ||
165 | #[inline] | |
166 | fn sort_upper(&self) -> S::Sort { | |
167 | S::sort_upper(self.aggregator()) | |
168 | } | |
169 | } | |
170 | ||
171 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> PartialEq | |
172 | for RefinementInfo<'a, F, D, A, S, RResult, N, P> | |
173 | where F : Float, | |
174 | D : 'static, | |
175 | A : Aggregator, | |
176 | S : AggregatorSorting<Agg = A> { | |
177 | ||
178 | #[inline] | |
179 | fn eq(&self, other : &Self) -> bool { self.cmp(other) == Equal } | |
180 | } | |
181 | ||
182 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> PartialOrd | |
183 | for RefinementInfo<'a, F, D, A, S, RResult, N, P> | |
184 | where F : Float, | |
185 | D : 'static, | |
186 | A : Aggregator, | |
187 | S : AggregatorSorting<Agg = A> { | |
188 | ||
189 | #[inline] | |
190 | fn partial_cmp(&self, other : &Self) -> Option<Ordering> { Some(self.cmp(other)) } | |
191 | } | |
192 | ||
193 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> Eq | |
194 | for RefinementInfo<'a, F, D, A, S, RResult, N, P> | |
195 | where F : Float, | |
196 | D : 'static, | |
197 | A : Aggregator, | |
198 | S : AggregatorSorting<Agg = A> { | |
199 | } | |
200 | ||
201 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> Ord | |
202 | for RefinementInfo<'a, F, D, A, S, RResult, N, P> | |
203 | where F : Float, | |
204 | D : 'static, | |
205 | A : Aggregator, | |
206 | S : AggregatorSorting<Agg = A> { | |
207 | ||
208 | #[inline] | |
209 | fn cmp(&self, other : &Self) -> Ordering { | |
210 | let agg1 = self.aggregator(); | |
211 | let agg2 = other.aggregator(); | |
212 | match S::sort_upper(agg1).cmp(&S::sort_upper(agg2)) { | |
213 | Equal => S::sort_lower(agg1).cmp(&S::sort_lower(agg2)), | |
214 | order => order, | |
215 | } | |
216 | } | |
217 | } | |
218 | ||
5 | 219 | /// This is a container for a [`BinaryHeap`] of [`RefinementInfo`]s together with tracking of |
220 | /// the greatest lower bound of the [`Aggregator`]s of the [`Node`]s therein accroding to | |
221 | /// chosen [`AggregatorSorting`]. | |
222 | struct HeapContainer<'a, F, D, A, S, RResult, const N : usize, const P : usize> | |
0 | 223 | where F : Float, |
224 | D : 'static + Copy, | |
225 | Const<P> : BranchCount<N>, | |
226 | A : Aggregator, | |
227 | S : AggregatorSorting<Agg = A> { | |
228 | heap : BinaryHeap<RefinementInfo<'a, F, D, A, S, RResult, N, P>>, | |
229 | glb : S::Sort, | |
230 | glb_stale_counter : usize, | |
231 | stale_insert_counter : usize, | |
232 | } | |
233 | ||
234 | impl<'a, F, D, A, S, RResult, const N : usize, const P : usize> | |
235 | HeapContainer<'a, F, D, A, S, RResult, N, P> | |
236 | where F : Float, | |
237 | D : 'static + Copy, | |
238 | Const<P> : BranchCount<N>, | |
239 | A : Aggregator, | |
240 | S : AggregatorSorting<Agg = A> { | |
241 | ||
5 | 242 | /// Push `ri` into the [`BinaryHeap`]. Do greatest lower bound maintenance. |
0 | 243 | fn push(&mut self, ri : RefinementInfo<'a, F, D, A, S, RResult, N, P>) { |
244 | if ri.sort_upper() >= self.glb { | |
245 | let l = ri.sort_lower(); | |
246 | self.heap.push(ri); | |
247 | self.glb = self.glb.max(l); | |
248 | if self.glb_stale_counter > 0 { | |
249 | self.stale_insert_counter += 1; | |
250 | } | |
251 | } | |
252 | } | |
253 | } | |
254 | ||
255 | impl<F : Float, D : 'static + Copy, A, const N : usize, const P : usize> | |
256 | Branches<F,D,A,N,P> | |
257 | where Const<P> : BranchCount<N>, | |
258 | A : Aggregator { | |
259 | ||
260 | /// Stage all subnodes of `self` into the refinement queue [`container`]. | |
261 | fn stage_refine<'a, S, RResult>( | |
262 | &'a mut self, | |
263 | domain : Cube<F,N>, | |
264 | container : &mut HeapContainer<'a, F, D, A, S, RResult, N, P>, | |
265 | ) where S : AggregatorSorting<Agg = A> { | |
266 | // Insert all subnodes into the refinement heap. | |
267 | for (node, subcube) in self.nodes_and_cubes_mut(&domain) { | |
268 | container.push(RefinementInfo { | |
269 | cube : subcube, | |
270 | node : node, | |
271 | refiner_info : None, | |
272 | sorting : PhantomData, | |
273 | }); | |
274 | } | |
275 | } | |
276 | } | |
277 | ||
278 | ||
279 | impl<F : Float, D : 'static + Copy, A, const N : usize, const P : usize> | |
280 | Node<F,D,A,N,P> | |
281 | where Const<P> : BranchCount<N>, | |
282 | A : Aggregator { | |
283 | ||
284 | /// If `self` is a leaf node, uses the `refiner` to determine whether further subdivision | |
285 | /// is required to get a sufficiently refined solution for the problem the refiner is used | |
286 | /// to solve. If the refiner returns [`RefinerResult::Certain`] result, it is returned. | |
287 | /// If [`RefinerResult::Uncertain`] is returned, the leaf is inserted back into the refinement | |
288 | /// queue `container`. If `self` is a branch, its subnodes are staged into `container` using | |
289 | /// [`Branches::stage_refine`]. | |
5 | 290 | /// |
291 | /// `domain`, as usual, indicates the spatial area corresponding to `self`. | |
0 | 292 | fn search_and_refine<'a, 'b, R, G>( |
293 | &'a mut self, | |
294 | domain : Cube<F,N>, | |
295 | refiner : &R, | |
296 | generator : &G, | |
297 | container : &'b mut HeapContainer<'a, F, D, A, R::Sorting, R::Result, N, P>, | |
298 | step : usize | |
299 | ) -> Option<R::Result> | |
300 | where R : Refiner<F, A, G, N>, | |
301 | G : SupportGenerator<F, N, Id=D>, | |
302 | G::SupportType : LocalAnalysis<F, A, N> { | |
303 | ||
304 | // The “complex” repeated pattern matching here is forced by mutability requirements. | |
305 | ||
306 | // Refine a leaf. | |
307 | let res = if let NodeOption::Leaf(ref v) = &mut self.data { | |
308 | let res = refiner.refine(&self.aggregator, &domain, v, generator, step); | |
309 | if let NeedRefinement = res { | |
310 | // The refiner has deemed the leaf unsufficiently refined, so subdivide | |
311 | // it and add the new nodes into the refinement priority heap. | |
312 | // We start iterating from the end to mix support_hint a bit. | |
313 | let mut it = v.iter().rev(); | |
314 | if let Some(&d) = it.next() { | |
315 | // Construct new Branches | |
316 | let support = generator.support_for(d); | |
317 | let b = Rc::new({ | |
318 | let mut b0 = Branches::new_with(&domain, &support); | |
319 | b0.insert(&domain, d, Const::<1>, &support); | |
320 | for &d in it { | |
321 | let support = generator.support_for(d); | |
322 | // TODO: can we be smarter than just refining one level? | |
323 | b0.insert(&domain, d, Const::<1>, &support); | |
324 | } | |
325 | b0 | |
326 | }); | |
327 | // Update current node | |
328 | self.aggregator.summarise(b.aggregators()); | |
329 | self.data = NodeOption::Branches(b); | |
330 | // The branches will be inserted into the refinement priority queue below. | |
331 | } | |
332 | } | |
333 | res | |
334 | } else { | |
335 | NeedRefinement | |
336 | }; | |
337 | ||
338 | if let Uncertain(agg, val) = res { | |
339 | // The refiner gave an undertain result. Push a leaf back into the refinement queue | |
340 | // with the new refined aggregator and custom return value. It will be popped and | |
341 | // returned in the loop of [`BT::search_and_refine`] when there are no unrefined | |
342 | // candidates that could potentially be better according to their basic aggregator. | |
343 | container.push(RefinementInfo { | |
344 | cube : domain, | |
345 | node : self, | |
346 | refiner_info : Some((agg, val)), | |
347 | sorting : PhantomData, | |
348 | }); | |
349 | None | |
350 | } else if let Certain(val) = res { | |
351 | // The refiner gave a certain result so return it to allow early termination | |
352 | Some(val) | |
353 | } else if let NodeOption::Branches(ref mut b) = &mut self.data { | |
354 | // Insert branches into refinement priority queue. | |
355 | Rc::make_mut(b).stage_refine(domain, container); | |
356 | None | |
357 | } else { | |
358 | None | |
359 | } | |
360 | } | |
361 | } | |
362 | ||
5 | 363 | /// Interface trait to a refining search on a [`BT`]. |
364 | /// | |
365 | /// This can be removed and the methods implemented directly on [`BT`] once Rust's const generics | |
366 | /// are flexible enough to allow fixing `P=pow(2, N)`. | |
0 | 367 | pub trait BTSearch<F, const N : usize> : BTImpl<F, N> |
368 | where F : Float { | |
369 | ||
5 | 370 | /// Perform a search on [`Self`], as determined by `refiner`. |
371 | /// | |
372 | /// Nodes are inserted in a priority queue and processed in the order determined by the | |
373 | /// [`AggregatorSorting`] [`Refiner::Sorting`]. Leaf nodes are subdivided until the refiner | |
374 | /// decides that a sufficiently refined leaf node has been found, as determined by either the | |
375 | /// refiner returning a [`RefinerResult::Certain`] result, or a previous | |
376 | /// [`RefinerResult::Uncertain`] result is found again at the top of the priority queue. | |
377 | /// | |
378 | /// The `generator` converts [`BTImpl::Data`] stored in the bisection tree into a [`Support`]. | |
0 | 379 | fn search_and_refine<'b, R, G>( |
380 | &'b mut self, | |
381 | refiner : &R, | |
382 | generator : &G, | |
383 | ) -> Option<R::Result> | |
384 | where R : Refiner<F, Self::Agg, G, N>, | |
385 | G : SupportGenerator<F, N, Id=Self::Data>, | |
386 | G::SupportType : LocalAnalysis<F, Self::Agg, N>; | |
387 | } | |
388 | ||
389 | // Needed to get access to a Node without a trait interface. | |
390 | macro_rules! impl_btsearch { | |
391 | ($($n:literal)*) => { $( | |
392 | impl<'a, M, F, D, A> | |
393 | BTSearch<F, $n> | |
394 | for BT<M,F,D,A,$n> | |
395 | where //Self : BTImpl<F,$n,Data=D,Agg=A, Depth=M>, // <== automatically deduce to be implemented | |
396 | M : Depth, | |
397 | F : Float, | |
398 | A : 'a + Aggregator, | |
399 | D : 'static + Copy + std::fmt::Debug { | |
400 | fn search_and_refine<'b, R, G>( | |
401 | &'b mut self, | |
402 | refiner : &R, | |
403 | generator : &G, | |
404 | ) -> Option<R::Result> | |
405 | where R : Refiner<F, A, G, $n>, | |
406 | G : SupportGenerator<F, $n, Id=D>, | |
407 | G::SupportType : LocalAnalysis<F, A, $n> { | |
408 | let mut container = HeapContainer { | |
409 | heap : BinaryHeap::new(), | |
410 | glb : R::Sorting::bottom(), | |
411 | glb_stale_counter : 0, | |
412 | stale_insert_counter : 0, | |
413 | }; | |
414 | container.push(RefinementInfo { | |
415 | cube : self.domain, | |
416 | node : &mut self.topnode, | |
417 | refiner_info : None, | |
418 | sorting : PhantomData, | |
419 | }); | |
420 | let mut step = 0; | |
421 | while let Some(ri) = container.heap.pop() { | |
422 | if let Some((_, result)) = ri.refiner_info { | |
423 | // Terminate based on a “best possible” result. | |
424 | return Some(result) | |
425 | } | |
426 | ||
427 | if ri.sort_lower() >= container.glb { | |
428 | container.glb_stale_counter += 1; | |
429 | if container.stale_insert_counter + container.glb_stale_counter | |
430 | > container.heap.len()/2 { | |
431 | // GLB propery no longer correct. | |
432 | match container.heap.iter().map(|ri| ri.sort_lower()).reduce(max) { | |
433 | Some(glb) => { | |
434 | container.glb = glb; | |
435 | container.heap.retain(|ri| ri.sort_upper() >= glb); | |
436 | }, | |
437 | None => { | |
438 | container.glb = R::Sorting::bottom() | |
439 | } | |
440 | } | |
441 | container.glb_stale_counter = 0; | |
442 | container.stale_insert_counter = 0; | |
443 | } | |
444 | } | |
445 | ||
446 | let res = ri.node.search_and_refine(ri.cube, refiner, generator, | |
447 | &mut container, step); | |
448 | if let Some(_) = res { | |
449 | // Terminate based on a certain result from the refiner | |
450 | return res | |
451 | } | |
452 | ||
453 | step += 1; | |
454 | } | |
455 | None | |
456 | } | |
457 | } | |
458 | )* } | |
459 | } | |
460 | ||
461 | impl_btsearch!(1 2 3 4); | |
462 |