Tue, 25 Oct 2022 23:05:40 +0300
Added NormExponent trait for exponents of norms
| 0 | 1 | /*! |
| 2 | Abstract linear operators. | |
| 3 | */ | |
| 4 | ||
| 5 | use numeric_literals::replace_float_literals; | |
| 6 | use std::marker::PhantomData; | |
| 7 | use crate::types::*; | |
| 8 | use serde::Serialize; | |
| 9 | ||
| 10 | /// Trait for linear operators on `X`. | |
| 11 | pub trait Linear<X> { | |
| 12 | /// The range space of the operator. | |
| 13 | type Codomain; | |
| 14 | /// Apply the linear operator to `x`. | |
| 15 | fn apply(&self, x : &X) -> Self::Codomain; | |
| 16 | } | |
| 17 | ||
| 18 | /// Efficient in-place summation. | |
| 19 | #[replace_float_literals(F::cast_from(literal))] | |
| 20 | pub trait AXPY<F : Num, X = Self> { | |
| 21 | /// Computes `y = βy + αx`, where `y` is `Self`. | |
| 22 | fn axpy(&mut self, α : F, x : &X, β : F); | |
| 23 | ||
| 24 | /// Copies `x` to `self`. | |
| 25 | fn copy_from(&mut self, x : &X) { | |
| 26 | self.axpy(1.0, x, 0.0) | |
| 27 | } | |
| 28 | ||
| 5 | 29 | /// Computes `y = αx`, where `y` is `Self`. |
| 0 | 30 | fn scale_from(&mut self, α : F, x : &X) { |
| 31 | self.axpy(α, x, 0.0) | |
| 32 | } | |
| 33 | } | |
| 34 | ||
| 35 | /// Efficient in-place application for [`Linear`] operators. | |
| 36 | #[replace_float_literals(F::cast_from(literal))] | |
| 37 | pub trait GEMV<F : Num, X, Y = <Self as Linear<X>>::Codomain> : Linear<X> { | |
| 5 | 38 | /// Computes `y = αAx + βy`, where `A` is `Self`. |
| 0 | 39 | fn gemv(&self, y : &mut Y, α : F, x : &X, β : F); |
| 40 | ||
| 5 | 41 | /// Computes `y = Ax`, where `A` is `Self` |
| 0 | 42 | fn apply_mut(&self, y : &mut Y, x : &X){ |
| 43 | self.gemv(y, 1.0, x, 0.0) | |
| 44 | } | |
| 45 | ||
| 5 | 46 | /// Computes `y += Ax`, where `A` is `Self` |
| 0 | 47 | fn apply_add(&self, y : &mut Y, x : &X){ |
| 48 | self.gemv(y, 1.0, x, 1.0) | |
| 49 | } | |
| 50 | } | |
| 51 | ||
| 52 | ||
| 53 | /// Bounded linear operators | |
| 54 | pub trait BoundedLinear<X> : Linear<X> { | |
| 55 | type FloatType : Float; | |
| 56 | /// A bound on the operator norm $\|A\|$ for the linear operator $A$=`self`. | |
| 57 | /// This is not expected to be the norm, just any bound on it that can be | |
| 58 | /// reasonably implemented. | |
| 59 | fn opnorm_bound(&self) -> Self::FloatType; | |
| 60 | } | |
| 61 | ||
| 5 | 62 | // Linear operator application into mutable target. The [`AsRef`] bound |
| 63 | // is used to guarantee compatibility with `Yʹ` and `Self::Codomain`; | |
| 64 | // the former is assumed to be e.g. a view into the latter. | |
| 0 | 65 | |
| 66 | /*impl<X,Y,T> Fn(&X) -> Y for T where T : Linear<X,Codomain=Y> { | |
| 67 | fn call(&self, x : &X) -> Y { | |
| 68 | self.apply(x) | |
| 69 | } | |
| 70 | }*/ | |
| 71 | ||
| 5 | 72 | /// Trait for forming the adjoint operator of `Self`. |
| 0 | 73 | pub trait Adjointable<X,Yʹ> : Linear<X> { |
| 74 | type AdjointCodomain; | |
| 75 | type Adjoint<'a> : Linear<Yʹ, Codomain=Self::AdjointCodomain> where Self : 'a; | |
| 76 | ||
| 77 | /// Form the adjoint operator of `self`. | |
| 78 | fn adjoint(&self) -> Self::Adjoint<'_>; | |
| 79 | ||
| 80 | /*fn adjoint_apply(&self, y : &Yʹ) -> Self::AdjointCodomain { | |
| 81 | self.adjoint().apply(y) | |
| 82 | }*/ | |
| 83 | } | |
| 84 | ||
| 5 | 85 | /// Trait for forming a preadjoint of an operator. |
| 86 | /// | |
| 87 | /// For an operator $A$ this is an operator $A_*$ | |
| 0 | 88 | /// such that its adjoint $(A_*)^*=A$. The space `X` is the domain of the `Self` |
| 89 | /// operator. The space `Ypre` is the predual of its codomain, and should be the | |
| 90 | /// domain of the adjointed operator. `Self::Preadjoint` should be | |
| 91 | /// [`Adjointable`]`<'a,Ypre,X>`. | |
| 92 | pub trait Preadjointable<X,Ypre> : Linear<X> { | |
| 93 | type PreadjointCodomain; | |
| 94 | type Preadjoint<'a> : Adjointable<Ypre, X, Codomain=Self::PreadjointCodomain> where Self : 'a; | |
| 95 | ||
| 96 | /// Form the preadjoint operator of `self`. | |
| 97 | fn preadjoint(&self) -> Self::Preadjoint<'_>; | |
| 98 | } | |
| 99 | ||
| 5 | 100 | /// Adjointable operators $A: X → Y$ on between reflexive spaces $X$ and $Y$. |
| 0 | 101 | pub trait SimplyAdjointable<X> : Adjointable<X,<Self as Linear<X>>::Codomain> {} |
| 102 | impl<'a,X,T> SimplyAdjointable<X> for T where T : Adjointable<X,<Self as Linear<X>>::Codomain> {} | |
| 103 | ||
| 104 | /// The identity operator | |
| 105 | #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] | |
| 106 | pub struct IdOp<X : Clone> (PhantomData<X>); | |
| 107 | ||
| 108 | impl<X> IdOp<X> where X : Clone { | |
| 109 | fn new() -> IdOp<X> { IdOp(PhantomData) } | |
| 110 | } | |
| 111 | ||
| 112 | impl<X> Linear<X> for IdOp<X> where X : Clone { | |
| 113 | type Codomain = X; | |
| 114 | fn apply(&self, x : &X) -> X { | |
| 115 | x.clone() | |
| 116 | } | |
| 117 | } | |
| 118 | ||
| 119 | #[replace_float_literals(F::cast_from(literal))] | |
| 120 | impl<F : Num, X, Y> GEMV<F, X, Y> for IdOp<X> where Y : AXPY<F, X>, X : Clone { | |
| 121 | // Computes `y = αAx + βy`, where `A` is `Self`. | |
| 122 | fn gemv(&self, y : &mut Y, α : F, x : &X, β : F) { | |
| 123 | y.axpy(α, x, β) | |
| 124 | } | |
| 125 | ||
| 126 | fn apply_mut(&self, y : &mut Y, x : &X){ | |
| 127 | y.copy_from(x); | |
| 128 | } | |
| 129 | } | |
| 130 | ||
| 131 | impl<X> BoundedLinear<X> for IdOp<X> where X : Clone { | |
| 132 | type FloatType = float; | |
| 133 | fn opnorm_bound(&self) -> float { 1.0 } | |
| 134 | } | |
| 135 | ||
| 136 | impl<X> Adjointable<X,X> for IdOp<X> where X : Clone { | |
| 137 | type AdjointCodomain=X; | |
| 138 | type Adjoint<'a> = IdOp<X> where X : 'a; | |
| 139 | fn adjoint(&self) -> Self::Adjoint<'_> { IdOp::new() } | |
| 140 | } | |
| 141 |