Tue, 25 Oct 2022 23:05:40 +0300
Added NormExponent trait for exponents of norms
| 0 | 1 | |
| 2 | use numeric_literals::replace_float_literals; | |
| 3 | use std::iter::Sum; | |
| 4 | use std::marker::PhantomData; | |
| 5 | use crate::types::Float; | |
| 6 | use crate::mapping::Mapping; | |
| 7 | use crate::linops::Linear; | |
| 8 | use crate::sets::Set; | |
| 5 | 9 | use crate::sets::Cube; |
| 10 | use crate::loc::Loc; | |
| 0 | 11 | use super::support::*; |
| 12 | use super::bt::*; | |
| 13 | use super::refine::*; | |
| 14 | use super::aggregator::*; | |
| 15 | use super::either::*; | |
| 16 | use crate::fe_model::base::RealLocalModel; | |
| 17 | use crate::fe_model::p2_local_model::*; | |
| 18 | ||
| 5 | 19 | /// Presentation for (mathematical) functions constructed as a sum of components functions with |
| 20 | /// typically small support. | |
| 21 | /// | |
| 22 | /// The domain of the function is [`Loc`]`<F, N>`, where `F` is the type of floating point numbers, | |
| 23 | /// and `N` the dimension. | |
| 24 | /// | |
| 25 | /// The `generator` lists the component functions that have to implement [`Support`]. | |
| 26 | /// Identifiers of the components ([`SupportGenerator::Id`], usually `usize`) are stored stored | |
| 27 | /// in a [bisection tree][BTImpl], when one is provided as `bt`. However `bt` may also be `()` | |
| 28 | /// for a [`PreBTFN`] that is only useful for vector space operations with a full [`BTFN`]. | |
| 0 | 29 | #[derive(Clone,Debug)] |
| 30 | pub struct BTFN< | |
| 31 | F : Float, | |
| 32 | G : SupportGenerator<F, N>, | |
| 33 | BT /*: BTImpl<F, N>*/, | |
| 34 | const N : usize | |
| 35 | > /*where G::SupportType : LocalAnalysis<F, A, N>*/ { | |
| 36 | bt : BT, | |
| 37 | generator : G, | |
| 38 | _phantoms : PhantomData<F>, | |
| 39 | } | |
| 40 | ||
| 41 | impl<F : Float, G, BT, const N : usize> | |
| 42 | BTFN<F, G, BT, N> | |
| 43 | where G : SupportGenerator<F, N, Id=BT::Data>, | |
| 44 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 45 | BT : BTImpl<F, N> { | |
| 46 | ||
| 5 | 47 | /// Create a new BTFN from a support generator and a pre-initialised bisection tree. |
| 48 | /// | |
| 49 | /// The bisection tree `bt` should be pre-initialised to correspond to the `generator`. | |
| 50 | /// Use [`Self::construct`] if no preinitialised tree is available. Use [`Self::new_refresh`] | |
| 51 | /// when the aggregators of the tree may need updates. | |
| 52 | /// | |
| 53 | /// See the documentation for [`BTFN`] on the role of the `generator`. | |
| 0 | 54 | pub fn new(bt : BT, generator : G) -> Self { |
| 55 | BTFN { | |
| 56 | bt : bt, | |
| 57 | generator : generator, | |
| 58 | _phantoms : std::marker::PhantomData, | |
| 59 | } | |
| 60 | } | |
| 61 | ||
| 5 | 62 | /// Create a new BTFN support generator and a pre-initialised bisection tree, |
| 63 | /// cloning the tree and refreshing aggregators. | |
| 64 | /// | |
| 65 | /// The bisection tree `bt` should be pre-initialised to correspond to the `generator`, but | |
| 66 | /// the aggregator may be out of date. | |
| 67 | /// | |
| 68 | /// See the documentation for [`BTFN`] on the role of the `generator`. | |
| 0 | 69 | pub fn new_refresh(bt : &BT, generator : G) -> Self { |
| 70 | // clone().refresh_aggregator(…) as opposed to convert_aggregator | |
| 71 | // ensures that type is maintained. Due to Rc-pointer copy-on-write, | |
| 72 | // the effort is not significantly different. | |
| 73 | let mut btnew = bt.clone(); | |
| 74 | btnew.refresh_aggregator(&generator); | |
| 75 | BTFN::new(btnew, generator) | |
| 76 | } | |
| 77 | ||
| 5 | 78 | /// Create a new BTFN from a support generator, domain, and depth for a new [`BT`]. |
| 79 | /// | |
| 80 | /// The top node of the created [`BT`] will have the given `domain`. | |
| 81 | /// | |
| 82 | /// See the documentation for [`BTFN`] on the role of the `generator`. | |
| 0 | 83 | pub fn construct(domain : Cube<F, N>, depth : BT::Depth, generator : G) -> Self { |
| 84 | let mut bt = BT::new(domain, depth); | |
| 85 | for (d, support) in generator.all_data() { | |
| 86 | bt.insert(d, &support); | |
| 87 | } | |
| 88 | Self::new(bt, generator) | |
| 89 | } | |
| 90 | ||
| 5 | 91 | /// Convert the aggregator of the [`BTFN`] to a different one. |
| 92 | /// | |
| 93 | /// This will construct a [`BTFN`] with the same components and generator as the (consumed) | |
| 94 | /// `self`, but a new `BT` with [`Aggregator`]s of type `ANew`. | |
| 0 | 95 | pub fn convert_aggregator<ANew>(self) -> BTFN<F, G, BT::Converted<ANew>, N> |
| 96 | where ANew : Aggregator, | |
| 97 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 98 | G::SupportType : LocalAnalysis<F, ANew, N> { | |
| 99 | BTFN::new(self.bt.convert_aggregator(&self.generator), self.generator) | |
| 100 | } | |
| 101 | ||
| 102 | /// Change the generator (after, e.g., a scaling of the latter). | |
| 5 | 103 | fn new_generator(&self, generator : G) -> Self { |
| 0 | 104 | BTFN::new_refresh(&self.bt, generator) |
| 105 | } | |
| 106 | ||
| 107 | /// Refresh aggregator after updates to generator | |
| 108 | fn refresh_aggregator(&mut self) { | |
| 109 | self.bt.refresh_aggregator(&self.generator); | |
| 110 | } | |
| 111 | ||
| 112 | } | |
| 113 | ||
| 5 | 114 | impl<F : Float, G, BT, const N : usize> |
| 115 | BTFN<F, G, BT, N> | |
| 116 | where G : SupportGenerator<F, N> { | |
| 117 | /// Change the [bisection tree][BTImpl] of the [`BTFN`] to a different one. | |
| 118 | /// | |
| 119 | /// This can be used to convert a [`PreBTFN`] to a full [`BTFN`], or the change | |
| 120 | /// the aggreagator; see also [`self.convert_aggregator`]. | |
| 121 | pub fn instantiate< | |
| 122 | BTNew : BTImpl<F, N, Data=G::Id>, | |
| 123 | > (self, domain : Cube<F, N>, depth : BTNew::Depth) -> BTFN<F, G, BTNew, N> | |
| 124 | where G::SupportType : LocalAnalysis<F, BTNew::Agg, N> { | |
| 125 | BTFN::construct(domain, depth, self.generator) | |
| 126 | } | |
| 127 | } | |
| 128 | ||
| 129 | /// A BTFN with no bisection tree. | |
| 130 | /// | |
| 131 | /// Most BTFN methods are not available, but if a BTFN is going to be summed with another | |
| 132 | /// before other use, it will be more efficient to not construct an unnecessary bisection tree | |
| 133 | /// that would be shortly dropped. | |
| 0 | 134 | pub type PreBTFN<F, G, const N : usize> = BTFN<F, G, (), N>; |
| 135 | ||
| 136 | impl<F : Float, G, const N : usize> PreBTFN<F, G, N> where G : SupportGenerator<F, N> { | |
| 137 | ||
| 5 | 138 | /// Create a new [`PreBTFN`] with no bisection tree. |
| 0 | 139 | pub fn new_pre(generator : G) -> Self { |
| 140 | BTFN { | |
| 141 | bt : (), | |
| 142 | generator : generator, | |
| 143 | _phantoms : std::marker::PhantomData, | |
| 144 | } | |
| 145 | } | |
| 146 | } | |
| 147 | ||
| 148 | impl<F : Float, G, BT, const N : usize> | |
| 149 | BTFN<F, G, BT, N> | |
| 150 | where G : SupportGenerator<F, N, Id=usize>, | |
| 151 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 152 | BT : BTImpl<F, N, Data=usize> { | |
| 153 | ||
| 154 | /// Helper function for implementing [`std::ops::Add`]. | |
| 155 | fn add_another<G2>(self, other : G2) -> BTFN<F, BothGenerators<G, G2>, BT, N> | |
| 156 | where G2 : SupportGenerator<F, N, Id=usize>, | |
| 157 | G2::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 158 | ||
| 159 | let mut bt = self.bt; | |
| 160 | let both = BothGenerators(self.generator, other); | |
| 161 | ||
| 162 | for (d, support) in both.all_right_data() { | |
| 163 | bt.insert(d, &support); | |
| 164 | } | |
| 165 | ||
| 166 | BTFN { | |
| 167 | bt : bt, | |
| 168 | generator : both, | |
| 169 | _phantoms : std::marker::PhantomData, | |
| 170 | } | |
| 171 | } | |
| 172 | } | |
| 173 | ||
| 174 | macro_rules! make_btfn_add { | |
| 175 | ($lhs:ty, $preprocess:path, $($extra_trait:ident)?) => { | |
| 176 | impl<'a, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 177 | std::ops::Add<BTFN<F, G2, BT2, N>> for | |
| 178 | $lhs | |
| 179 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 180 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 181 | G2 : SupportGenerator<F, N, Id=usize>, | |
| 182 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 183 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 184 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 185 | #[inline] | |
| 186 | fn add(self, other : BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 187 | $preprocess(self).add_another(other.generator) | |
| 188 | } | |
| 189 | } | |
| 190 | ||
| 191 | impl<'a, 'b, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 192 | std::ops::Add<&'b BTFN<F, G2, BT2, N>> for | |
| 193 | $lhs | |
| 194 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 195 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 196 | G2 : SupportGenerator<F, N, Id=usize> + Clone, | |
| 197 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 198 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 199 | ||
| 200 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 201 | #[inline] | |
| 202 | fn add(self, other : &'b BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 203 | $preprocess(self).add_another(other.generator.clone()) | |
| 204 | } | |
| 205 | } | |
| 206 | } | |
| 207 | } | |
| 208 | ||
| 209 | make_btfn_add!(BTFN<F, G1, BT1, N>, std::convert::identity, ); | |
| 210 | make_btfn_add!(&'a BTFN<F, G1, BT1, N>, Clone::clone, Clone); | |
| 211 | ||
| 212 | macro_rules! make_btfn_sub { | |
| 213 | ($lhs:ty, $preprocess:path, $($extra_trait:ident)?) => { | |
| 214 | impl<'a, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 215 | std::ops::Sub<BTFN<F, G2, BT2, N>> for | |
| 216 | $lhs | |
| 217 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 218 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 219 | G2 : SupportGenerator<F, N, Id=usize>, | |
| 220 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 221 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 222 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 223 | #[inline] | |
| 224 | fn sub(self, other : BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 225 | $preprocess(self).add_another(other.generator.neg()) | |
| 226 | } | |
| 227 | } | |
| 228 | ||
| 229 | impl<'a, 'b, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 230 | std::ops::Sub<&'b BTFN<F, G2, BT2, N>> for | |
| 231 | $lhs | |
| 232 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 233 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 234 | G2 : SupportGenerator<F, N, Id=usize> + Clone, | |
| 235 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 236 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 5 | 237 | &'b G2 : std::ops::Neg<Output=G2> { |
| 0 | 238 | |
| 239 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 240 | #[inline] | |
| 241 | fn sub(self, other : &'b BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 5 | 242 | $preprocess(self).add_another(-&other.generator) |
| 0 | 243 | } |
| 244 | } | |
| 245 | } | |
| 246 | } | |
| 247 | ||
| 248 | make_btfn_sub!(BTFN<F, G1, BT1, N>, std::convert::identity, ); | |
| 249 | make_btfn_sub!(&'a BTFN<F, G1, BT1, N>, Clone::clone, Clone); | |
| 250 | ||
| 251 | macro_rules! make_btfn_scalarop_rhs { | |
| 252 | ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { | |
| 253 | impl<F : Float, G, BT, const N : usize> | |
| 254 | std::ops::$trait_assign<F> | |
| 255 | for BTFN<F, G, BT, N> | |
| 256 | where BT : BTImpl<F, N>, | |
| 257 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 258 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 259 | #[inline] | |
| 260 | fn $fn_assign(&mut self, t : F) { | |
| 261 | self.generator.$fn_assign(t); | |
| 262 | self.refresh_aggregator(); | |
| 263 | } | |
| 264 | } | |
| 265 | ||
| 266 | impl<F : Float, G, BT, const N : usize> | |
| 267 | std::ops::$trait<F> | |
| 268 | for BTFN<F, G, BT, N> | |
| 269 | where BT : BTImpl<F, N>, | |
| 270 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 271 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 272 | type Output = Self; | |
| 273 | #[inline] | |
| 274 | fn $fn(mut self, t : F) -> Self::Output { | |
| 275 | self.generator.$fn_assign(t); | |
| 276 | self.refresh_aggregator(); | |
| 277 | self | |
| 278 | } | |
| 279 | } | |
| 280 | ||
| 281 | impl<'a, F : Float, G, BT, const N : usize> | |
| 282 | std::ops::$trait<F> | |
| 283 | for &'a BTFN<F, G, BT, N> | |
| 284 | where BT : BTImpl<F, N>, | |
| 285 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 286 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 287 | &'a G : std::ops::$trait<F,Output=G> { | |
| 288 | type Output = BTFN<F, G, BT, N>; | |
| 289 | #[inline] | |
| 290 | fn $fn(self, t : F) -> Self::Output { | |
| 291 | self.new_generator(self.generator.$fn(t)) | |
| 292 | } | |
| 293 | } | |
| 294 | } | |
| 295 | } | |
| 296 | ||
| 297 | make_btfn_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); | |
| 298 | make_btfn_scalarop_rhs!(Div, div, DivAssign, div_assign); | |
| 299 | ||
| 300 | macro_rules! make_btfn_scalarop_lhs { | |
| 301 | ($trait:ident, $fn:ident, $fn_assign:ident, $($f:ident)+) => { $( | |
| 302 | impl<G, BT, const N : usize> | |
| 303 | std::ops::$trait<BTFN<$f, G, BT, N>> | |
| 304 | for $f | |
| 305 | where BT : BTImpl<$f, N>, | |
| 306 | G : SupportGenerator<$f, N, Id=BT::Data>, | |
| 307 | G::SupportType : LocalAnalysis<$f, BT::Agg, N> { | |
| 308 | type Output = BTFN<$f, G, BT, N>; | |
| 309 | #[inline] | |
| 310 | fn $fn(self, mut a : BTFN<$f, G, BT, N>) -> Self::Output { | |
| 311 | a.generator.$fn_assign(self); | |
| 312 | a.refresh_aggregator(); | |
| 313 | a | |
| 314 | } | |
| 315 | } | |
| 316 | ||
| 317 | impl<'a, G, BT, const N : usize> | |
| 318 | std::ops::$trait<&'a BTFN<$f, G, BT, N>> | |
| 319 | for $f | |
| 320 | where BT : BTImpl<$f, N>, | |
| 321 | G : SupportGenerator<$f, N, Id=BT::Data> + Clone, | |
| 322 | G::SupportType : LocalAnalysis<$f, BT::Agg, N>, | |
| 323 | // FIXME: This causes compiler overflow | |
| 324 | /*&'a G : std::ops::$trait<$f,Output=G>*/ { | |
| 325 | type Output = BTFN<$f, G, BT, N>; | |
| 326 | #[inline] | |
| 327 | fn $fn(self, a : &'a BTFN<$f, G, BT, N>) -> Self::Output { | |
| 328 | let mut tmp = a.generator.clone(); | |
| 329 | tmp.$fn_assign(self); | |
| 330 | a.new_generator(tmp) | |
| 331 | // FIXME: Prevented by the compiler overflow above. | |
| 332 | //a.new_generator(a.generator.$fn(a)) | |
| 333 | } | |
| 334 | } | |
| 335 | )+ } | |
| 336 | } | |
| 337 | ||
| 338 | make_btfn_scalarop_lhs!(Mul, mul, mul_assign, f32 f64); | |
| 339 | make_btfn_scalarop_lhs!(Div, div, div_assign, f32 f64); | |
| 340 | ||
| 341 | macro_rules! make_btfn_unaryop { | |
| 342 | ($trait:ident, $fn:ident) => { | |
| 343 | impl<F : Float, G, BT, const N : usize> | |
| 344 | std::ops::$trait | |
| 345 | for BTFN<F, G, BT, N> | |
| 346 | where BT : BTImpl<F, N>, | |
| 347 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 348 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 349 | type Output = Self; | |
| 350 | #[inline] | |
| 351 | fn $fn(mut self) -> Self::Output { | |
| 352 | self.generator = self.generator.$fn(); | |
| 353 | self.refresh_aggregator(); | |
| 354 | self | |
| 355 | } | |
| 356 | } | |
| 357 | ||
| 358 | /*impl<'a, F : Float, G, BT, const N : usize> | |
| 359 | std::ops::$trait | |
| 360 | for &'a BTFN<F, G, BT, N> | |
| 361 | where BT : BTImpl<F, N>, | |
| 362 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 363 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 364 | &'a G : std::ops::$trait<Output=G> { | |
| 365 | type Output = BTFN<F, G, BT, N>; | |
| 366 | #[inline] | |
| 367 | fn $fn(self) -> Self::Output { | |
| 368 | self.new_generator(std::ops::$trait::$fn(&self.generator)) | |
| 369 | } | |
| 370 | }*/ | |
| 371 | } | |
| 372 | } | |
| 373 | ||
| 374 | make_btfn_unaryop!(Neg, neg); | |
| 375 | ||
| 376 | ||
| 377 | ||
| 378 | // | |
| 379 | // Mapping | |
| 380 | // | |
| 381 | ||
| 382 | impl<'a, F : Float, G, BT, V, const N : usize> Mapping<&'a Loc<F,N>> | |
| 383 | for BTFN<F, G, BT, N> | |
| 384 | where BT : BTImpl<F, N>, | |
| 385 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 386 | G::SupportType : LocalAnalysis<F, BT::Agg, N> + Mapping<&'a Loc<F,N>, Codomain = V>, | |
| 387 | V : Sum { | |
| 388 | ||
| 389 | type Codomain = V; | |
| 390 | ||
| 391 | fn value(&self, x : &'a Loc<F,N>) -> Self::Codomain { | |
| 5 | 392 | self.bt.iter_at(x).map(|&d| self.generator.support_for(d).value(x)).sum() |
| 0 | 393 | } |
| 394 | } | |
| 395 | ||
| 396 | impl<F : Float, G, BT, V, const N : usize> Mapping<Loc<F,N>> | |
| 397 | for BTFN<F, G, BT, N> | |
| 398 | where BT : BTImpl<F, N>, | |
| 399 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 400 | G::SupportType : LocalAnalysis<F, BT::Agg, N> + Mapping<Loc<F,N>, Codomain = V>, | |
| 401 | V : Sum { | |
| 402 | ||
| 403 | type Codomain = V; | |
| 404 | ||
| 405 | fn value(&self, x : Loc<F,N>) -> Self::Codomain { | |
| 5 | 406 | self.bt.iter_at(&x).map(|&d| self.generator.support_for(d).value(x)).sum() |
| 0 | 407 | } |
| 408 | } | |
| 409 | ||
| 410 | impl<F : Float, G, BT, const N : usize> GlobalAnalysis<F, BT::Agg> | |
| 411 | for BTFN<F, G, BT, N> | |
| 412 | where BT : BTImpl<F, N>, | |
| 413 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 414 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 415 | ||
| 416 | #[inline] | |
| 417 | fn global_analysis(&self) -> BT::Agg { | |
| 418 | self.bt.global_analysis() | |
| 419 | } | |
| 420 | } | |
| 421 | ||
| 422 | // | |
| 423 | // Blanket implementation of BTFN as a linear functional over objects | |
| 424 | // that are linear functionals over BTFN. | |
| 425 | // | |
| 426 | ||
| 427 | impl<X, F : Float, G, BT, const N : usize> Linear<X> | |
| 428 | for BTFN<F, G, BT, N> | |
| 429 | where BT : BTImpl<F, N>, | |
| 430 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 431 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 432 | X : Linear<BTFN<F, G, BT, N>, Codomain=F> { | |
| 433 | type Codomain = F; | |
| 434 | ||
| 435 | #[inline] | |
| 436 | fn apply(&self, x : &X) -> F { | |
| 437 | x.apply(self) | |
| 438 | } | |
| 439 | } | |
| 440 | ||
| 441 | /// Helper trait for performing approximate minimisation using P2 elements. | |
| 5 | 442 | /// |
| 443 | /// `U` is the domain, generally [`Loc`]`<F, N>`, and `F` the type of floating point numbers. | |
| 444 | /// `Self` is generally a set of `U`, for example, [`Cube`]`<F, N>`. | |
| 0 | 445 | pub trait P2Minimise<U, F : Float> : Set<U> { |
| 5 | 446 | /// Minimise `g` over the set presented by `Self`. |
| 447 | /// | |
| 448 | /// The function returns `(x, v)` where `x` is the minimiser `v` an approximation of `g(x)`. | |
| 0 | 449 | fn p2_minimise<G : Fn(&U) -> F>(&self, g : G) -> (U, F); |
| 450 | ||
| 451 | } | |
| 452 | ||
| 453 | impl<F : Float> P2Minimise<Loc<F, 1>, F> for Cube<F, 1> { | |
| 454 | fn p2_minimise<G : Fn(&Loc<F, 1>) -> F>(&self, g : G) -> (Loc<F, 1>, F) { | |
| 455 | let interval = Simplex(self.corners()); | |
| 456 | interval.p2_model(&g).minimise(&interval) | |
| 457 | } | |
| 458 | } | |
| 459 | ||
| 460 | #[replace_float_literals(F::cast_from(literal))] | |
| 461 | impl<F : Float> P2Minimise<Loc<F, 2>, F> for Cube<F, 2> { | |
| 462 | fn p2_minimise<G : Fn(&Loc<F, 2>) -> F>(&self, g : G) -> (Loc<F, 2>, F) { | |
| 463 | if false { | |
| 464 | // Split into two triangle (simplex) with separate P2 model in each. | |
| 465 | // The six nodes of each triangle are the corners and the edges. | |
| 466 | let [a, b, c, d] = self.corners(); | |
| 467 | let [va, vb, vc, vd] = [g(&a), g(&b), g(&c), g(&d)]; | |
| 468 | ||
| 469 | let ab = midpoint(&a, &b); | |
| 470 | let bc = midpoint(&b, &c); | |
| 471 | let ca = midpoint(&c, &a); | |
| 472 | let cd = midpoint(&c, &d); | |
| 473 | let da = midpoint(&d, &a); | |
| 474 | let [vab, vbc, vca, vcd, vda] = [g(&ab), g(&bc), g(&ca), g(&cd), g(&da)]; | |
| 475 | ||
| 476 | let s1 = Simplex([a, b, c]); | |
| 5 | 477 | let m1 = P2LocalModel::<F, 2, 3>::new( |
| 0 | 478 | &[a, b, c, ab, bc, ca], |
| 479 | &[va, vb, vc, vab, vbc, vca] | |
| 480 | ); | |
| 481 | ||
| 482 | let r1@(_, v1) = m1.minimise(&s1); | |
| 483 | ||
| 484 | let s2 = Simplex([c, d, a]); | |
| 5 | 485 | let m2 = P2LocalModel::<F, 2, 3>::new( |
| 0 | 486 | &[c, d, a, cd, da, ca], |
| 487 | &[vc, vd, va, vcd, vda, vca] | |
| 488 | ); | |
| 489 | ||
| 490 | let r2@(_, v2) = m2.minimise(&s2); | |
| 491 | ||
| 492 | if v1 < v2 { r1 } else { r2 } | |
| 493 | } else { | |
| 494 | // Single P2 model for the entire cube. | |
| 495 | let [a, b, c, d] = self.corners(); | |
| 496 | let [va, vb, vc, vd] = [g(&a), g(&b), g(&c), g(&d)]; | |
| 497 | let [e, f] = match 'r' { | |
| 498 | 'm' => [(&a + &b + &c) / 3.0, (&c + &d + &a) / 3.0], | |
| 499 | 'c' => [midpoint(&a, &b), midpoint(&a, &d)], | |
| 500 | 'w' => [(&a + &b * 2.0) / 3.0, (&a + &d * 2.0) / 3.0], | |
| 501 | 'r' => { | |
| 502 | // Pseudo-randomise edge midpoints | |
| 503 | let Loc([x, y]) = a; | |
| 504 | let tmp : f64 = (x+y).as_(); | |
| 505 | match tmp.to_bits() % 4 { | |
| 506 | 0 => [midpoint(&a, &b), midpoint(&a, &d)], | |
| 507 | 1 => [midpoint(&c, &d), midpoint(&a, &d)], | |
| 508 | 2 => [midpoint(&a, &b), midpoint(&b, &c)], | |
| 509 | _ => [midpoint(&c, &d), midpoint(&b, &c)], | |
| 510 | } | |
| 511 | }, | |
| 512 | _ => [self.center(), (&a + &b) / 2.0], | |
| 513 | }; | |
| 514 | let [ve, vf] = [g(&e), g(&f)]; | |
| 515 | ||
| 5 | 516 | let m1 = P2LocalModel::<F, 2, 3>::new( |
| 0 | 517 | &[a, b, c, d, e, f], |
| 518 | &[va, vb, vc, vd, ve, vf], | |
| 519 | ); | |
| 520 | ||
| 521 | m1.minimise(self) | |
| 522 | } | |
| 523 | } | |
| 524 | } | |
| 525 | ||
| 5 | 526 | /// Helper type to use [`P2Refiner`] for maximisation. |
| 0 | 527 | struct RefineMax; |
| 5 | 528 | |
| 529 | /// Helper type to use [`P2Refiner`] for minimisation. | |
| 0 | 530 | struct RefineMin; |
| 531 | ||
| 5 | 532 | /// A bisection tree [`Refiner`] for maximising or minimising a [`BTFN`]. |
| 533 | /// | |
| 0 | 534 | /// The type parameter `T` should be either [`RefineMax`] or [`RefineMin`]. |
| 535 | struct P2Refiner<F : Float, T> { | |
| 5 | 536 | /// The maximum / minimum should be above / below this threshold. |
| 537 | /// If the threshold cannot be satisfied, the refiner will return `None`. | |
| 0 | 538 | bound : Option<F>, |
| 5 | 539 | /// Tolerance for function value estimation. |
| 0 | 540 | tolerance : F, |
| 5 | 541 | /// Maximum number of steps to execute the refiner for |
| 0 | 542 | max_steps : usize, |
| 5 | 543 | /// Either [`RefineMax`] or [`RefineMin`]. Used only for type system purposes. |
| 0 | 544 | #[allow(dead_code)] // `how` is just for type system purposes. |
| 545 | how : T, | |
| 546 | } | |
| 547 | ||
| 548 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 549 | for P2Refiner<F, RefineMax> | |
| 550 | where Cube<F, N> : P2Minimise<Loc<F, N>, F>, | |
| 551 | G : SupportGenerator<F, N>, | |
| 552 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 553 | + LocalAnalysis<F, Bounds<F>, N> { | |
| 554 | type Result = Option<(Loc<F, N>, F)>; | |
| 555 | type Sorting = UpperBoundSorting<F>; | |
| 556 | ||
| 557 | fn refine( | |
| 558 | &self, | |
| 559 | aggregator : &Bounds<F>, | |
| 560 | cube : &Cube<F, N>, | |
| 561 | data : &Vec<G::Id>, | |
| 562 | generator : &G, | |
| 563 | step : usize | |
| 564 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 565 | // g gives the negative of the value of the function presented by `data` and `generator`. | |
| 566 | let g = move |x : &Loc<F,N>| { | |
| 567 | let f = move |&d| generator.support_for(d).value(x); | |
| 568 | -data.iter().map(f).sum::<F>() | |
| 569 | }; | |
| 570 | // … so the negative of the minimum is the maximm we want. | |
| 571 | let (x, neg_v) = cube.p2_minimise(g); | |
| 572 | let v = -neg_v; | |
| 573 | ||
| 574 | if self.bound.map_or(false, |b| aggregator.upper() <= b + self.tolerance) { | |
| 575 | // The upper bound is below the maximisation threshold. Don't bother with this cube. | |
| 576 | RefinerResult::Uncertain(*aggregator, None) | |
| 577 | } else if step < self.max_steps && (aggregator.upper() - v).abs() > self.tolerance { | |
| 578 | // The function isn't refined enough in `cube`, so return None | |
| 579 | // to indicate that further subdivision is required. | |
| 580 | RefinerResult::NeedRefinement | |
| 581 | } else { | |
| 582 | // The data is refined enough, so return new hopefully better bounds | |
| 583 | // and the maximiser. | |
| 584 | let res = (x, v); | |
| 585 | let bounds = Bounds(aggregator.lower(), v); | |
| 586 | RefinerResult::Uncertain(bounds, Some(res)) | |
| 587 | } | |
| 588 | } | |
| 589 | } | |
| 590 | ||
| 591 | ||
| 592 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 593 | for P2Refiner<F, RefineMin> | |
| 594 | where Cube<F, N> : P2Minimise<Loc<F, N>, F>, | |
| 595 | G : SupportGenerator<F, N>, | |
| 596 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 597 | + LocalAnalysis<F, Bounds<F>, N> { | |
| 598 | type Result = Option<(Loc<F, N>, F)>; | |
| 599 | type Sorting = LowerBoundSorting<F>; | |
| 600 | ||
| 601 | fn refine( | |
| 602 | &self, | |
| 603 | aggregator : &Bounds<F>, | |
| 604 | cube : &Cube<F, N>, | |
| 605 | data : &Vec<G::Id>, | |
| 606 | generator : &G, | |
| 607 | step : usize | |
| 608 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 609 | // g gives the value of the function presented by `data` and `generator`. | |
| 610 | let g = move |x : &Loc<F,N>| { | |
| 611 | let f = move |&d| generator.support_for(d).value(x); | |
| 612 | data.iter().map(f).sum::<F>() | |
| 613 | }; | |
| 614 | // Minimise it. | |
| 615 | let (x, v) = cube.p2_minimise(g); | |
| 616 | ||
| 617 | if self.bound.map_or(false, |b| aggregator.lower() >= b - self.tolerance) { | |
| 618 | // The lower bound is above the minimisation threshold. Don't bother with this cube. | |
| 619 | RefinerResult::Uncertain(*aggregator, None) | |
| 620 | } else if step < self.max_steps && (aggregator.lower() - v).abs() > self.tolerance { | |
| 621 | // The function isn't refined enough in `cube`, so return None | |
| 622 | // to indicate that further subdivision is required. | |
| 623 | RefinerResult::NeedRefinement | |
| 624 | } else { | |
| 625 | // The data is refined enough, so return new hopefully better bounds | |
| 626 | // and the minimiser. | |
| 627 | let res = (x, v); | |
| 628 | let bounds = Bounds(v, aggregator.upper()); | |
| 629 | RefinerResult::Uncertain(bounds, Some(res)) | |
| 630 | } | |
| 631 | } | |
| 632 | } | |
| 633 | ||
| 634 | ||
| 5 | 635 | /// A bisection tree [`Refiner`] for checking that a [`BTFN`] is within a stated |
| 636 | //// upper or lower bound. | |
| 637 | /// | |
| 638 | /// The type parameter `T` should be either [`RefineMax`] for upper bound or [`RefineMin`] | |
| 639 | /// for lower bound. | |
| 0 | 640 | |
| 641 | struct BoundRefiner<F : Float, T> { | |
| 5 | 642 | /// The upper/lower bound to check for |
| 0 | 643 | bound : F, |
| 5 | 644 | /// Tolerance for function value estimation. |
| 0 | 645 | tolerance : F, |
| 5 | 646 | /// Maximum number of steps to execute the refiner for |
| 0 | 647 | max_steps : usize, |
| 648 | #[allow(dead_code)] // `how` is just for type system purposes. | |
| 5 | 649 | /// Either [`RefineMax`] or [`RefineMin`]. Used only for type system purposes. |
| 0 | 650 | how : T, |
| 651 | } | |
| 652 | ||
| 653 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 654 | for BoundRefiner<F, RefineMax> | |
| 655 | where G : SupportGenerator<F, N> { | |
| 656 | type Result = bool; | |
| 657 | type Sorting = UpperBoundSorting<F>; | |
| 658 | ||
| 659 | fn refine( | |
| 660 | &self, | |
| 661 | aggregator : &Bounds<F>, | |
| 662 | _cube : &Cube<F, N>, | |
| 663 | _data : &Vec<G::Id>, | |
| 664 | _generator : &G, | |
| 665 | step : usize | |
| 666 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 667 | if aggregator.upper() <= self.bound + self.tolerance { | |
| 668 | // Below upper bound within tolerances. Indicate uncertain success. | |
| 669 | RefinerResult::Uncertain(*aggregator, true) | |
| 670 | } else if aggregator.lower() >= self.bound - self.tolerance { | |
| 671 | // Above upper bound within tolerances. Indicate certain failure. | |
| 672 | RefinerResult::Certain(false) | |
| 673 | } else if step < self.max_steps { | |
| 674 | // No decision possible, but within step bounds - further subdivision is required. | |
| 675 | RefinerResult::NeedRefinement | |
| 676 | } else { | |
| 677 | // No decision possible, but past step bounds | |
| 678 | RefinerResult::Uncertain(*aggregator, false) | |
| 679 | } | |
| 680 | } | |
| 681 | } | |
| 682 | ||
| 5 | 683 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> |
| 684 | for BoundRefiner<F, RefineMin> | |
| 685 | where G : SupportGenerator<F, N> { | |
| 686 | type Result = bool; | |
| 687 | type Sorting = UpperBoundSorting<F>; | |
| 688 | ||
| 689 | fn refine( | |
| 690 | &self, | |
| 691 | aggregator : &Bounds<F>, | |
| 692 | _cube : &Cube<F, N>, | |
| 693 | _data : &Vec<G::Id>, | |
| 694 | _generator : &G, | |
| 695 | step : usize | |
| 696 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 697 | if aggregator.lower() >= self.bound - self.tolerance { | |
| 698 | // Above lower bound within tolerances. Indicate uncertain success. | |
| 699 | RefinerResult::Uncertain(*aggregator, true) | |
| 700 | } else if aggregator.upper() <= self.bound + self.tolerance { | |
| 701 | // Below lower bound within tolerances. Indicate certain failure. | |
| 702 | RefinerResult::Certain(false) | |
| 703 | } else if step < self.max_steps { | |
| 704 | // No decision possible, but within step bounds - further subdivision is required. | |
| 705 | RefinerResult::NeedRefinement | |
| 706 | } else { | |
| 707 | // No decision possible, but past step bounds | |
| 708 | RefinerResult::Uncertain(*aggregator, false) | |
| 709 | } | |
| 710 | } | |
| 711 | } | |
| 0 | 712 | |
| 713 | impl<F : Float, G, BT, const N : usize> BTFN<F, G, BT, N> | |
| 714 | where BT : BTSearch<F, N, Agg=Bounds<F>>, | |
| 715 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 716 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 717 | + LocalAnalysis<F, Bounds<F>, N>, | |
| 718 | Cube<F, N> : P2Minimise<Loc<F, N>, F> { | |
| 719 | ||
| 5 | 720 | /// Maximise the `BTFN` within stated value `tolerance`. |
| 721 | /// | |
| 722 | /// At most `max_steps` refinement steps are taken. | |
| 723 | /// Returns the approximate maximiser and the corresponding function value. | |
| 0 | 724 | pub fn maximise(&mut self, tolerance : F, max_steps : usize) -> (Loc<F, N>, F) { |
| 725 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMax, bound : None }; | |
| 726 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.").unwrap() | |
| 727 | } | |
| 728 | ||
| 5 | 729 | /// Maximise the `BTFN` within stated value `tolerance` subject to a lower bound. |
| 730 | /// | |
| 731 | /// At most `max_steps` refinement steps are taken. | |
| 732 | /// Returns the approximate maximiser and the corresponding function value when one is found | |
| 733 | /// above the `bound` threshold, otherwise `None`. | |
| 0 | 734 | pub fn maximise_above(&mut self, bound : F, tolerance : F, max_steps : usize) |
| 735 | -> Option<(Loc<F, N>, F)> { | |
| 736 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMax, bound : Some(bound) }; | |
| 737 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 738 | } | |
| 739 | ||
| 5 | 740 | /// Minimise the `BTFN` within stated value `tolerance`. |
| 741 | /// | |
| 742 | /// At most `max_steps` refinement steps are taken. | |
| 743 | /// Returns the approximate minimiser and the corresponding function value. | |
| 0 | 744 | pub fn minimise(&mut self, tolerance : F, max_steps : usize) -> (Loc<F, N>, F) { |
| 745 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMin, bound : None }; | |
| 746 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.").unwrap() | |
| 747 | } | |
| 748 | ||
| 5 | 749 | /// Minimise the `BTFN` within stated value `tolerance` subject to a lower bound. |
| 750 | /// | |
| 751 | /// At most `max_steps` refinement steps are taken. | |
| 752 | /// Returns the approximate minimiser and the corresponding function value when one is found | |
| 753 | /// above the `bound` threshold, otherwise `None`. | |
| 0 | 754 | pub fn minimise_below(&mut self, bound : F, tolerance : F, max_steps : usize) |
| 755 | -> Option<(Loc<F, N>, F)> { | |
| 756 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMin, bound : Some(bound) }; | |
| 757 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 758 | } | |
| 5 | 759 | |
| 760 | /// Verify that the `BTFN` has a given upper `bound` within indicated `tolerance`. | |
| 761 | /// | |
| 762 | /// At most `max_steps` refinement steps are taken. | |
| 0 | 763 | pub fn has_upper_bound(&mut self, bound : F, tolerance : F, max_steps : usize) -> bool { |
| 764 | let refiner = BoundRefiner{ bound, tolerance, max_steps, how : RefineMax }; | |
| 765 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 766 | } | |
| 5 | 767 | |
| 768 | /// Verify that the `BTFN` has a given lower `bound` within indicated `tolerance`. | |
| 769 | /// | |
| 770 | /// At most `max_steps` refinement steps are taken. | |
| 771 | pub fn has_lower_bound(&mut self, bound : F, tolerance : F, max_steps : usize) -> bool { | |
| 772 | let refiner = BoundRefiner{ bound, tolerance, max_steps, how : RefineMin }; | |
| 773 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 774 | } | |
| 0 | 775 | } |