Tue, 31 Dec 2024 10:51:32 -0500
Add add_mul to AXPY
| 5 | 1 | /*! | 
| 2 | Second order polynomical (P2) models on real intervals and planar 2D simplices. | |
| 3 | */ | |
| 4 | ||
| 0 | 5 | use crate::types::*; | 
| 6 | use crate::loc::Loc; | |
| 7 | use crate::sets::{Set,NPolygon,SpannedHalfspace}; | |
| 8 | use crate::linsolve::*; | |
| 63 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 9 | use crate::euclidean::Euclidean; | 
| 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 10 | use crate::instance::Instance; | 
| 0 | 11 | use super::base::{LocalModel,RealLocalModel}; | 
| 12 | use crate::sets::Cube; | |
| 13 | use numeric_literals::replace_float_literals; | |
| 14 | ||
| 5 | 15 | /// Type for simplices of arbitrary dimension `N`. | 
| 16 | /// | |
| 17 | /// The type parameter `D` indicates the number of nodes. (Rust's const generics do not currently | |
| 18 | /// allow its automatic calculation from `N`.) | |
| 0 | 19 | pub struct Simplex<F : Float, const N : usize, const D : usize>(pub [Loc<F, N>; D]); | 
| 5 | 20 | /// A two-dimensional planar simplex | 
| 21 | pub type PlanarSimplex<F> = Simplex<F, 2, 3>; | |
| 22 | /// A real interval | |
| 23 | pub type RealInterval<F> = Simplex<F, 1, 2>; | |
| 0 | 24 | |
| 5 | 25 | /// Calculates (a+b)/2 | 
| 0 | 26 | #[inline] | 
| 27 | #[replace_float_literals(F::cast_from(literal))] | |
| 28 | pub(crate) fn midpoint<F : Float, const N : usize>(a : &Loc<F,N>, b : &Loc<F,N>) -> Loc<F, N> { | |
| 29 | (a+b)/2.0 | |
| 30 | } | |
| 31 | ||
| 32 | impl<'a, F : Float> Set<Loc<F,1>> for RealInterval<F> { | |
| 33 | #[inline] | |
| 63 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 34 | fn contains<I : Instance<Loc<F, 1>>>(&self, z : I) -> bool { | 
| 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 35 | let &Loc([x]) = z.ref_instance(); | 
| 0 | 36 | let &[Loc([x0]), Loc([x1])] = &self.0; | 
| 37 | (x0 < x && x < x1) || (x1 < x && x < x0) | |
| 38 | } | |
| 39 | } | |
| 40 | ||
| 41 | impl<'a, F : Float> Set<Loc<F,2>> for PlanarSimplex<F> { | |
| 42 | #[inline] | |
| 63 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 43 | fn contains<I : Instance<Loc<F, 2>>>(&self, z : I) -> bool { | 
| 0 | 44 | let &[x0, x1, x2] = &self.0; | 
| 45 | NPolygon([[x0, x1].spanned_halfspace(), | |
| 46 | [x1, x2].spanned_halfspace(), | |
| 63 
f7b87d84864d
Extra reflexivity and hilbert-like requirements for Euclidean. Fuse Dot into Euclidean.
 Tuomo Valkonen <tuomov@iki.fi> parents: 
5diff
changeset | 47 | [x2, x0].spanned_halfspace()]).contains(z) | 
| 0 | 48 | } | 
| 49 | } | |
| 50 | ||
| 51 | trait P2Powers { | |
| 52 | type Output; | |
| 53 | type Diff; | |
| 54 | type Full; | |
| 55 | fn p2powers(&self) -> Self::Output; | |
| 56 | fn p2powers_full(&self) -> Self::Full; | |
| 57 | fn p2powers_diff(&self) -> Self::Diff; | |
| 58 | } | |
| 59 | ||
| 60 | #[replace_float_literals(F::cast_from(literal))] | |
| 61 | impl<F : Float> P2Powers for Loc<F, 1> { | |
| 62 | type Output = Loc<F, 1>; | |
| 63 | type Full = Loc<F, 3>; | |
| 64 | type Diff = Loc<Loc<F, 1>, 1>; | |
| 65 | ||
| 66 | #[inline] | |
| 67 | fn p2powers(&self) -> Self::Output { | |
| 68 | let &Loc([x0]) = self; | |
| 69 | [x0*x0].into() | |
| 70 | } | |
| 71 | ||
| 72 | #[inline] | |
| 73 | fn p2powers_full(&self) -> Self::Full { | |
| 74 | let &Loc([x0]) = self; | |
| 75 | [1.0, x0, x0*x0].into() | |
| 76 | } | |
| 77 | ||
| 78 | #[inline] | |
| 79 | fn p2powers_diff(&self) -> Self::Diff { | |
| 80 | let &Loc([x0]) = self; | |
| 81 | [[x0+x0].into()].into() | |
| 82 | } | |
| 83 | } | |
| 84 | ||
| 85 | #[replace_float_literals(F::cast_from(literal))] | |
| 86 | impl<F : Float> P2Powers for Loc<F, 2> { | |
| 87 | type Output = Loc<F, 3>; | |
| 88 | type Full = Loc<F, 6>; | |
| 89 | type Diff = Loc<Loc<F, 3>, 2>; | |
| 90 | ||
| 91 | #[inline] | |
| 92 | fn p2powers(&self) -> Self::Output { | |
| 93 | let &Loc([x0, x1]) = self; | |
| 94 | [x0*x0, x0*x1, x1*x1].into() | |
| 95 | } | |
| 96 | ||
| 97 | #[inline] | |
| 98 | fn p2powers_full(&self) -> Self::Full { | |
| 99 | let &Loc([x0, x1]) = self; | |
| 100 | [1.0, x0, x1, x0*x0, x0*x1, x1*x1].into() | |
| 101 | } | |
| 102 | ||
| 103 | #[inline] | |
| 104 | fn p2powers_diff(&self) -> Self::Diff { | |
| 105 | let &Loc([x0, x1]) = self; | |
| 106 | [[x0+x0, x1, 0.0].into(), [0.0, x0, x1+x1].into()].into() | |
| 107 | } | |
| 108 | } | |
| 109 | ||
| 5 | 110 | /// A trait for generating second order polynomial model of dimension `N` on `Self´. | 
| 111 | /// | |
| 112 | /// `Self` should present a subset aset of elements of the type [`Loc`]`<F, N>`. | |
| 0 | 113 | pub trait P2Model<F : Num, const N : usize> { | 
| 5 | 114 | /// Implementation type of the second order polynomical model. | 
| 115 | /// Typically a [`P2LocalModel`]. | |
| 0 | 116 | type Model : LocalModel<Loc<F,N>,F>; | 
| 5 | 117 | /// Generates a second order polynomial model of the function `g` on `Self`. | 
| 0 | 118 | fn p2_model<G : Fn(&Loc<F, N>) -> F>(&self, g : G) -> Self::Model; | 
| 119 | } | |
| 120 | ||
| 5 | 121 | /// A local second order polynomical model of dimension `N` with `E` edges | 
| 122 | pub struct P2LocalModel<F : Num, const N : usize, const E : usize/*, const V : usize, const Q : usize*/> { | |
| 0 | 123 | a0 : F, | 
| 124 | a1 : Loc<F, N>, | |
| 125 | a2 : Loc<F, E>, | |
| 126 | //node_values : Loc<F, V>, | |
| 127 | //edge_values : Loc<F, Q>, | |
| 128 | } | |
| 129 | ||
| 130 | // | |
| 131 | // 1D planar model construction | |
| 132 | // | |
| 133 | ||
| 134 | impl<F : Float> RealInterval<F> { | |
| 135 | #[inline] | |
| 136 | fn midpoints(&self) -> [Loc<F, 1>; 1] { | |
| 137 | let [ref n0, ref n1] = &self.0; | |
| 138 | let n01 = midpoint(n0, n1); | |
| 139 | [n01] | |
| 140 | } | |
| 141 | } | |
| 142 | ||
| 5 | 143 | impl<F : Float> P2LocalModel<F, 1, 1/*, 2, 0*/> { | 
| 144 | /// Creates a new 1D second order polynomical model based on three nodal coordinates and | |
| 145 | /// corresponding function values. | |
| 0 | 146 | #[inline] | 
| 147 | pub fn new( | |
| 148 | &[n0, n1, n01] : &[Loc<F, 1>; 3], | |
| 149 | &[v0, v1, v01] : &[F; 3], | |
| 150 | ) -> Self { | |
| 151 | let p = move |x : &Loc<F, 1>, v : F| { | |
| 152 | let Loc([c, d, e]) = x.p2powers_full(); | |
| 153 | [c, d, e, v] | |
| 154 | }; | |
| 155 | let [a0, a1, a11] = linsolve([ | |
| 156 | p(&n0, v0), | |
| 157 | p(&n1, v1), | |
| 158 | p(&n01, v01) | |
| 159 | ]); | |
| 160 | P2LocalModel { | |
| 161 | a0 : a0, | |
| 162 | a1 : [a1].into(), | |
| 163 | a2 : [a11].into(), | |
| 164 | //node_values : [v0, v1].into(), | |
| 165 | //edge_values: [].into(), | |
| 166 | } | |
| 167 | } | |
| 168 | } | |
| 169 | ||
| 170 | impl<F : Float> P2Model<F,1> for RealInterval<F> { | |
| 5 | 171 | type Model = P2LocalModel<F, 1, 1/*, 2, 0*/>; | 
| 0 | 172 | |
| 173 | #[inline] | |
| 174 | fn p2_model<G : Fn(&Loc<F, 1>) -> F>(&self, g : G) -> Self::Model { | |
| 175 | let [n01] = self.midpoints(); | |
| 176 | let [n0, n1] = self.0; | |
| 177 | let vals = [g(&n0), g(&n1), g(&n01)]; | |
| 178 | let nodes = [n0, n1, n01]; | |
| 179 | Self::Model::new(&nodes, &vals) | |
| 180 | } | |
| 181 | } | |
| 182 | ||
| 183 | // | |
| 184 | // 2D planar model construction | |
| 185 | // | |
| 186 | ||
| 187 | impl<F : Float> PlanarSimplex<F> { | |
| 188 | #[inline] | |
| 5 | 189 | /// Returns the midpoints of all the edges of the simplex | 
| 0 | 190 | fn midpoints(&self) -> [Loc<F, 2>; 3] { | 
| 191 | let [ref n0, ref n1, ref n2] = &self.0; | |
| 192 | let n01 = midpoint(n0, n1); | |
| 193 | let n12 = midpoint(n1, n2); | |
| 194 | let n20 = midpoint(n2, n0); | |
| 195 | [n01, n12, n20] | |
| 196 | } | |
| 197 | } | |
| 198 | ||
| 5 | 199 | impl<F : Float> P2LocalModel<F, 2, 3/*, 3, 3*/> { | 
| 200 | /// Creates a new 2D second order polynomical model based on six nodal coordinates and | |
| 201 | /// corresponding function values. | |
| 0 | 202 | #[inline] | 
| 203 | pub fn new( | |
| 204 | &[n0, n1, n2, n01, n12, n20] : &[Loc<F, 2>; 6], | |
| 205 | &[v0, v1, v2, v01, v12, v20] : &[F; 6], | |
| 206 | ) -> Self { | |
| 207 | let p = move |x : &Loc<F,2>, v :F| { | |
| 208 | let Loc([c, d, e, f, g, h]) = x.p2powers_full(); | |
| 209 | [c, d, e, f, g, h, v] | |
| 210 | }; | |
| 211 | let [a0, a1, a2, a11, a12, a22] = linsolve([ | |
| 212 | p(&n0, v0), | |
| 213 | p(&n1, v1), | |
| 214 | p(&n2, v2), | |
| 215 | p(&n01, v01), | |
| 216 | p(&n12, v12), | |
| 217 | p(&n20, v20), | |
| 218 | ]); | |
| 219 | P2LocalModel { | |
| 220 | a0 : a0, | |
| 221 | a1 : [a1, a2].into(), | |
| 222 | a2 : [a11, a12, a22].into(), | |
| 223 | //node_values : [v0, v1, v2].into(), | |
| 224 | //edge_values: [v01, v12, v20].into(), | |
| 225 | } | |
| 226 | } | |
| 227 | } | |
| 228 | ||
| 229 | impl<F : Float> P2Model<F,2> for PlanarSimplex<F> { | |
| 5 | 230 | type Model = P2LocalModel<F, 2, 3/*, 3, 3*/>; | 
| 0 | 231 | |
| 232 | #[inline] | |
| 233 | fn p2_model<G : Fn(&Loc<F, 2>) -> F>(&self, g : G) -> Self::Model { | |
| 234 | let midpoints = self.midpoints(); | |
| 235 | let [ref n0, ref n1, ref n2] = self.0; | |
| 236 | let [ref n01, ref n12, ref n20] = midpoints; | |
| 237 | let vals = [g(n0), g(n1), g(n2), g(n01), g(n12), g(n20)]; | |
| 238 | let nodes = [*n0, *n1, *n2, *n01, *n12, *n20]; | |
| 239 | Self::Model::new(&nodes, &vals) | |
| 240 | } | |
| 241 | } | |
| 242 | ||
| 243 | macro_rules! impl_local_model { | |
| 244 | ($n:literal, $e:literal, $v:literal, $q:literal) => { | |
| 5 | 245 | impl<F : Float> LocalModel<Loc<F, $n>, F> for P2LocalModel<F, $n, $e/*, $v, $q*/> { | 
| 0 | 246 | #[inline] | 
| 247 | fn value(&self, x : &Loc<F,$n>) -> F { | |
| 248 | self.a0 + x.dot(&self.a1) + x.p2powers().dot(&self.a2) | |
| 249 | } | |
| 250 | ||
| 251 | #[inline] | |
| 252 | fn differential(&self, x : &Loc<F,$n>) -> Loc<F,$n> { | |
| 253 | self.a1 + x.p2powers_diff().map(|di| di.dot(&self.a2)) | |
| 254 | } | |
| 255 | } | |
| 256 | } | |
| 257 | } | |
| 258 | ||
| 259 | impl_local_model!(1, 1, 2, 0); | |
| 260 | impl_local_model!(2, 3, 3, 3); | |
| 261 | ||
| 262 | ||
| 263 | // | |
| 264 | // Minimisation | |
| 265 | // | |
| 266 | ||
| 267 | #[replace_float_literals(F::cast_from(literal))] | |
| 5 | 268 | impl<F : Float> P2LocalModel<F, 1, 1/*, 2, 0*/> { | 
| 269 | /// Minimises the model along the edge `[x0, x1]`. | |
| 0 | 270 | #[inline] | 
| 271 | fn minimise_edge(&self, x0 : Loc<F, 1>, x1 : Loc<F,1>) -> (Loc<F,1>, F) { | |
| 272 | let &P2LocalModel{ | |
| 273 | a1 : Loc([a1]), | |
| 274 | a2 : Loc([a11]), | |
| 275 | //node_values : Loc([v0, v1]), | |
| 276 | .. | |
| 277 | } = self; | |
| 278 | // We do this in cases, first trying for an interior solution, then edges. | |
| 279 | // For interior solution, first check determinant; no point trying if non-positive | |
| 280 | if a11 > 0.0 { | |
| 281 | // An interior solution x[1] has to satisfy | |
| 282 | // 2a₁₁*x[1] + a₁ =0 | |
| 283 | // This gives | |
| 284 | let t = -a1/(2.0*a11); | |
| 285 | let (Loc([t0]), Loc([t1])) = (x0, x1); | |
| 286 | if (t0 <= t && t <= t1) || (t1 <= t && t <= t0) { | |
| 287 | let x = [t].into(); | |
| 288 | let v = self.value(&x); | |
| 289 | return (x, v) | |
| 290 | } | |
| 291 | } | |
| 292 | ||
| 293 | let v0 = self.value(&x0); | |
| 294 | let v1 = self.value(&x1); | |
| 295 | if v0 < v1 { (x0, v0) } else { (x1, v1) } | |
| 296 | } | |
| 297 | } | |
| 298 | ||
| 299 | impl<'a, F : Float> RealLocalModel<RealInterval<F>,Loc<F,1>,F> | |
| 5 | 300 | for P2LocalModel<F, 1, 1/*, 2, 0*/> { | 
| 0 | 301 | #[inline] | 
| 302 | fn minimise(&self, &Simplex([x0, x1]) : &RealInterval<F>) -> (Loc<F,1>, F) { | |
| 303 | self.minimise_edge(x0, x1) | |
| 304 | } | |
| 305 | } | |
| 306 | ||
| 307 | #[replace_float_literals(F::cast_from(literal))] | |
| 5 | 308 | impl<F : Float> P2LocalModel<F, 2, 3/*, 3, 3*/> { | 
| 309 | /// Minimise the 2D model along the edge `[x0, x1] = {x0 + t(x1 - x0) | t ∈ [0, 1] }`. | |
| 0 | 310 | #[inline] | 
| 311 | fn minimise_edge(&self, x0 : &Loc<F,2>, x1 : &Loc<F,2>/*, v0 : F, v1 : F*/) -> (Loc<F,2>, F) { | |
| 312 | let &P2LocalModel { | |
| 313 | a0, | |
| 314 | a1 : Loc([a1, a2]), | |
| 315 | a2 : Loc([a11, a12, a22]), | |
| 316 | .. | |
| 317 | } = self; | |
| 318 | let &Loc([x00, x01]) = x0; | |
| 319 | let d@Loc([d0, d1]) = x1 - x0; | |
| 320 | let b0 = a0 + a1*x00 + a2*x01 + a11*x00*x00 + a12*x00*x01 + a22*x01*x01; | |
| 321 | let b1 = a1*d0 + a2*d1 + 2.0*a11*d0*x00 + a12*(d0*x01 + d1*x00) + 2.0*a22*d1*x01; | |
| 322 | let b11 = a11*d0*d0 + a12*d0*d1 + a22*d1*d1; | |
| 323 | let edge_1d_model = P2LocalModel { | |
| 324 | a0 : b0, | |
| 325 | a1 : Loc([b1]), | |
| 326 | a2 : Loc([b11]), | |
| 327 | //node_values : Loc([v0, v1]), | |
| 328 | }; | |
| 329 | let (Loc([t]), v) = edge_1d_model.minimise_edge(0.0.into(), 1.0.into()); | |
| 330 | (x0 + d*t, v) | |
| 331 | } | |
| 332 | } | |
| 333 | ||
| 334 | #[replace_float_literals(F::cast_from(literal))] | |
| 335 | impl<'a, F : Float> RealLocalModel<PlanarSimplex<F>,Loc<F,2>,F> | |
| 5 | 336 | for P2LocalModel<F, 2, 3/*, 3, 3*/> { | 
| 0 | 337 | #[inline] | 
| 338 | fn minimise(&self, el : &PlanarSimplex<F>) -> (Loc<F,2>, F) { | |
| 339 | let &P2LocalModel { | |
| 340 | a1 : Loc([a1, a2]), | |
| 341 | a2 : Loc([a11, a12, a22]), | |
| 342 | //node_values : Loc([v0, v1, v2]), | |
| 343 | .. | |
| 344 | } = self; | |
| 345 | ||
| 346 | // We do this in cases, first trying for an interior solution, then edges. | |
| 347 | // For interior solution, first check determinant; no point trying if non-positive | |
| 348 | let r = 2.0*(a11*a22-a12*a12); | |
| 349 | if r > 0.0 { | |
| 350 | // An interior solution (x[1], x[2]) has to satisfy | |
| 351 | // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 | |
| 352 | // This gives | |
| 353 | let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); | |
| 354 | if el.contains(&x) { | |
| 355 | return (x, self.value(&x)) | |
| 356 | } | |
| 357 | } | |
| 358 | ||
| 359 | let &[ref x0, ref x1, ref x2] = &el.0; | |
| 360 | let mut min_edge = self.minimise_edge(x0, x1); | |
| 361 | let more_edge = [self.minimise_edge(x1, x2), | |
| 362 | self.minimise_edge(x2, x0)]; | |
| 363 | ||
| 364 | for edge in more_edge { | |
| 365 | if edge.1 < min_edge.1 { | |
| 366 | min_edge = edge; | |
| 367 | } | |
| 368 | } | |
| 369 | ||
| 370 | min_edge | |
| 371 | } | |
| 372 | } | |
| 373 | ||
| 374 | #[replace_float_literals(F::cast_from(literal))] | |
| 375 | impl<'a, F : Float> RealLocalModel<Cube<F, 2>,Loc<F,2>,F> | |
| 5 | 376 | for P2LocalModel<F, 2, 3/*, 3, 3*/> { | 
| 0 | 377 | #[inline] | 
| 378 | fn minimise(&self, el : &Cube<F, 2>) -> (Loc<F,2>, F) { | |
| 379 | let &P2LocalModel { | |
| 380 | a1 : Loc([a1, a2]), | |
| 381 | a2 : Loc([a11, a12, a22]), | |
| 382 | //node_values : Loc([v0, v1, v2]), | |
| 383 | .. | |
| 384 | } = self; | |
| 385 | ||
| 386 | // We do this in cases, first trying for an interior solution, then edges. | |
| 387 | // For interior solution, first check determinant; no point trying if non-positive | |
| 388 | let r = 2.0*(a11*a22-a12*a12); | |
| 389 | if r > 0.0 { | |
| 390 | // An interior solution (x[1], x[2]) has to satisfy | |
| 391 | // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 | |
| 392 | // This gives | |
| 393 | let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); | |
| 394 | if el.contains(&x) { | |
| 395 | return (x, self.value(&x)) | |
| 396 | } | |
| 397 | } | |
| 398 | ||
| 399 | let [x0, x1, x2, x3] = el.corners(); | |
| 400 | let mut min_edge = self.minimise_edge(&x0, &x1); | |
| 401 | let more_edge = [self.minimise_edge(&x1, &x2), | |
| 402 | self.minimise_edge(&x2, &x3), | |
| 403 | self.minimise_edge(&x3, &x0)]; | |
| 404 | ||
| 405 | for edge in more_edge { | |
| 406 | if edge.1 < min_edge.1 { | |
| 407 | min_edge = edge; | |
| 408 | } | |
| 409 | } | |
| 410 | ||
| 411 | min_edge | |
| 412 | } | |
| 413 | } | |
| 414 | ||
| 415 | #[cfg(test)] | |
| 416 | mod tests { | |
| 417 | use super::*; | |
| 418 | ||
| 419 | #[test] | |
| 420 | fn p2_model_1d_test() { | |
| 421 | let vertices = [Loc([0.0]), Loc([1.0])]; | |
| 422 | let domain = Simplex(vertices); | |
| 423 | // A simple quadratic function for which the approximation is exact on reals, | |
| 424 | // and appears exact on f64 as well. | |
| 425 | let f = |&Loc([x]) : &Loc<f64, 1>| x*x + x + 1.0; | |
| 426 | let model = domain.p2_model(f); | |
| 427 | let xs = [Loc([0.5]), Loc([0.25])]; | |
| 428 | ||
| 429 | for x in vertices.iter().chain(xs.iter()) { | |
| 430 | assert_eq!(model.value(&x), f(&x)); | |
| 431 | } | |
| 432 | ||
| 433 | assert_eq!(model.minimise(&domain), (Loc([0.0]), 1.0)); | |
| 434 | } | |
| 435 | ||
| 436 | #[test] | |
| 437 | fn p2_model_2d_test() { | |
| 438 | let vertices = [Loc([0.0, 0.0]), Loc([1.0, 0.0]), Loc([1.0, 1.0])]; | |
| 439 | let domain = Simplex(vertices); | |
| 440 | // A simple quadratic function for which the approximation is exact on reals, | |
| 441 | // and appears exact on f64 as well. | |
| 1 
df3901ec2f5d
Fix some unit tests after fundamental changes that made them invalid
 Tuomo Valkonen <tuomov@iki.fi> parents: 
0diff
changeset | 442 | let f = |&Loc([x, y]) : &Loc<f64, 2>| - (x*x + x*y + x - 2.0 * y + 1.0); | 
| 0 | 443 | let model = domain.p2_model(f); | 
| 444 | let xs = [Loc([0.5, 0.5]), Loc([0.25, 0.25])]; | |
| 445 | ||
| 446 | for x in vertices.iter().chain(xs.iter()) { | |
| 447 | assert_eq!(model.value(&x), f(&x)); | |
| 448 | } | |
| 449 | ||
| 1 
df3901ec2f5d
Fix some unit tests after fundamental changes that made them invalid
 Tuomo Valkonen <tuomov@iki.fi> parents: 
0diff
changeset | 450 | assert_eq!(model.minimise(&domain), (Loc([1.0, 0.0]), -3.0)); | 
| 0 | 451 | } | 
| 452 | } |