Mon, 24 Oct 2022 10:52:19 +0300
Added type for numerical errors
| 0 | 1 | |
| 2 | use numeric_literals::replace_float_literals; | |
| 3 | use std::iter::Sum; | |
| 4 | use std::marker::PhantomData; | |
| 5 | pub use nalgebra::Const; | |
| 6 | use crate::types::Float; | |
| 7 | use crate::mapping::Mapping; | |
| 8 | use crate::linops::Linear; | |
| 9 | use crate::sets::Set; | |
| 10 | pub use crate::sets::Cube; | |
| 11 | pub use crate::loc::Loc; | |
| 12 | use super::support::*; | |
| 13 | use super::bt::*; | |
| 14 | use super::refine::*; | |
| 15 | use super::aggregator::*; | |
| 16 | use super::either::*; | |
| 17 | use crate::fe_model::base::RealLocalModel; | |
| 18 | use crate::fe_model::p2_local_model::*; | |
| 19 | ||
| 20 | /// Presentation for functions constructed as a sum of components with limited support. | |
| 21 | /// Lookup of relevant components at a specific point of a [`Loc<F,N>`] domain is done | |
| 22 | /// with a bisection tree (BT). We do notn impose that the `BT` parameter would be an in | |
| 23 | /// instance [`BTImpl`] to allow performance improvements via “pre-BTFNs” that do not | |
| 24 | /// construct a BT until being added to another function. Addition and subtraction always | |
| 25 | /// use a copy-on-write clone of the BT of the left-hand-side operand, discarding | |
| 26 | /// the BT of the right-hand-side operand. | |
| 27 | #[derive(Clone,Debug)] | |
| 28 | pub struct BTFN< | |
| 29 | F : Float, | |
| 30 | G : SupportGenerator<F, N>, | |
| 31 | BT /*: BTImpl<F, N>*/, | |
| 32 | const N : usize | |
| 33 | > /*where G::SupportType : LocalAnalysis<F, A, N>*/ { | |
| 34 | bt : BT, | |
| 35 | generator : G, | |
| 36 | _phantoms : PhantomData<F>, | |
| 37 | } | |
| 38 | ||
| 39 | impl<F : Float, G, BT, const N : usize> | |
| 40 | BTFN<F, G, BT, N> | |
| 41 | where G : SupportGenerator<F, N, Id=BT::Data>, | |
| 42 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 43 | BT : BTImpl<F, N> { | |
| 44 | ||
| 45 | /// Returns the [`Support`] corresponding to the identifier `d`. | |
| 46 | /// Simply wraps [`SupportGenerator::support_for`]. | |
| 47 | #[inline] | |
| 48 | fn support_for(&self, d : G::Id) -> G::SupportType { | |
| 49 | self.generator.support_for(d) | |
| 50 | } | |
| 51 | ||
| 52 | /// Create a new BTFN. The bisection tree `bt` should be pre-initialised to | |
| 53 | /// correspond to the `generator`. Use [`Self::construct`] if no preinitialised tree | |
| 54 | /// is available. Use [`Self::new_refresh`] when the aggregator may need updates. | |
| 55 | pub fn new(bt : BT, generator : G) -> Self { | |
| 56 | BTFN { | |
| 57 | bt : bt, | |
| 58 | generator : generator, | |
| 59 | _phantoms : std::marker::PhantomData, | |
| 60 | } | |
| 61 | } | |
| 62 | ||
| 63 | /// Create a new BTFN. The bisection tree `bt` should be pre-initialised to | |
| 64 | /// correspond to the `generator`, but the aggregator may be out of date. | |
| 65 | pub fn new_refresh(bt : &BT, generator : G) -> Self { | |
| 66 | // clone().refresh_aggregator(…) as opposed to convert_aggregator | |
| 67 | // ensures that type is maintained. Due to Rc-pointer copy-on-write, | |
| 68 | // the effort is not significantly different. | |
| 69 | let mut btnew = bt.clone(); | |
| 70 | btnew.refresh_aggregator(&generator); | |
| 71 | BTFN::new(btnew, generator) | |
| 72 | } | |
| 73 | ||
| 74 | /// Create a new BTFN. Unlike [`Self::new`], this constructs the bisection tree based on | |
| 75 | /// the generator. | |
| 76 | pub fn construct(domain : Cube<F, N>, depth : BT::Depth, generator : G) -> Self { | |
| 77 | let mut bt = BT::new(domain, depth); | |
| 78 | for (d, support) in generator.all_data() { | |
| 79 | bt.insert(d, &support); | |
| 80 | } | |
| 81 | Self::new(bt, generator) | |
| 82 | } | |
| 83 | ||
| 84 | /// Construct a new instance for a different aggregator | |
| 85 | pub fn convert_aggregator<ANew>(self) -> BTFN<F, G, BT::Converted<ANew>, N> | |
| 86 | where ANew : Aggregator, | |
| 87 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 88 | G::SupportType : LocalAnalysis<F, ANew, N> { | |
| 89 | BTFN::new(self.bt.convert_aggregator(&self.generator), self.generator) | |
| 90 | } | |
| 91 | ||
| 92 | /// Change the [`BTImpl`]. | |
| 93 | pub fn instantiate< | |
| 94 | BTNew : BTImpl<F, N, Data=BT::Data>, | |
| 95 | > (self, domain : Cube<F, N>, depth : BTNew::Depth) -> BTFN<F, G, BTNew, N> | |
| 96 | where G::SupportType : LocalAnalysis<F, BTNew::Agg, N> { | |
| 97 | BTFN::construct(domain, depth, self.generator) | |
| 98 | } | |
| 99 | ||
| 100 | /// Change the generator (after, e.g., a scaling of the latter). | |
| 101 | pub fn new_generator(&self, generator : G) -> Self { | |
| 102 | BTFN::new_refresh(&self.bt, generator) | |
| 103 | } | |
| 104 | ||
| 105 | /// Refresh aggregator after updates to generator | |
| 106 | fn refresh_aggregator(&mut self) { | |
| 107 | self.bt.refresh_aggregator(&self.generator); | |
| 108 | } | |
| 109 | ||
| 110 | } | |
| 111 | ||
| 112 | /// A “pre-BTFN” with no bisection tree. | |
| 113 | pub type PreBTFN<F, G, const N : usize> = BTFN<F, G, (), N>; | |
| 114 | ||
| 115 | impl<F : Float, G, const N : usize> PreBTFN<F, G, N> where G : SupportGenerator<F, N> { | |
| 116 | ||
| 117 | /// Create a new “pre-BTFN” with no bisection tree. This can feasibly only be | |
| 118 | /// multiplied by a scalar or added to or subtracted from a proper [`BTFN`]. | |
| 119 | pub fn new_pre(generator : G) -> Self { | |
| 120 | BTFN { | |
| 121 | bt : (), | |
| 122 | generator : generator, | |
| 123 | _phantoms : std::marker::PhantomData, | |
| 124 | } | |
| 125 | } | |
| 126 | } | |
| 127 | ||
| 128 | impl<F : Float, G, BT, const N : usize> | |
| 129 | BTFN<F, G, BT, N> | |
| 130 | where G : SupportGenerator<F, N, Id=usize>, | |
| 131 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 132 | BT : BTImpl<F, N, Data=usize> { | |
| 133 | ||
| 134 | /// Helper function for implementing [`std::ops::Add`]. | |
| 135 | fn add_another<G2>(self, other : G2) -> BTFN<F, BothGenerators<G, G2>, BT, N> | |
| 136 | where G2 : SupportGenerator<F, N, Id=usize>, | |
| 137 | G2::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 138 | ||
| 139 | let mut bt = self.bt; | |
| 140 | let both = BothGenerators(self.generator, other); | |
| 141 | ||
| 142 | for (d, support) in both.all_right_data() { | |
| 143 | bt.insert(d, &support); | |
| 144 | } | |
| 145 | ||
| 146 | BTFN { | |
| 147 | bt : bt, | |
| 148 | generator : both, | |
| 149 | _phantoms : std::marker::PhantomData, | |
| 150 | } | |
| 151 | } | |
| 152 | } | |
| 153 | ||
| 154 | macro_rules! make_btfn_add { | |
| 155 | ($lhs:ty, $preprocess:path, $($extra_trait:ident)?) => { | |
| 156 | impl<'a, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 157 | std::ops::Add<BTFN<F, G2, BT2, N>> for | |
| 158 | $lhs | |
| 159 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 160 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 161 | G2 : SupportGenerator<F, N, Id=usize>, | |
| 162 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 163 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 164 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 165 | #[inline] | |
| 166 | fn add(self, other : BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 167 | $preprocess(self).add_another(other.generator) | |
| 168 | } | |
| 169 | } | |
| 170 | ||
| 171 | impl<'a, 'b, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 172 | std::ops::Add<&'b BTFN<F, G2, BT2, N>> for | |
| 173 | $lhs | |
| 174 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 175 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 176 | G2 : SupportGenerator<F, N, Id=usize> + Clone, | |
| 177 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 178 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 179 | ||
| 180 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 181 | #[inline] | |
| 182 | fn add(self, other : &'b BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 183 | $preprocess(self).add_another(other.generator.clone()) | |
| 184 | } | |
| 185 | } | |
| 186 | } | |
| 187 | } | |
| 188 | ||
| 189 | make_btfn_add!(BTFN<F, G1, BT1, N>, std::convert::identity, ); | |
| 190 | make_btfn_add!(&'a BTFN<F, G1, BT1, N>, Clone::clone, Clone); | |
| 191 | ||
| 192 | macro_rules! make_btfn_sub { | |
| 193 | ($lhs:ty, $preprocess:path, $($extra_trait:ident)?) => { | |
| 194 | impl<'a, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 195 | std::ops::Sub<BTFN<F, G2, BT2, N>> for | |
| 196 | $lhs | |
| 197 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 198 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 199 | G2 : SupportGenerator<F, N, Id=usize>, | |
| 200 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 201 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N> { | |
| 202 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 203 | #[inline] | |
| 204 | fn sub(self, other : BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 205 | $preprocess(self).add_another(other.generator.neg()) | |
| 206 | } | |
| 207 | } | |
| 208 | ||
| 209 | impl<'a, 'b, F : Float, G1, G2, BT1, BT2, const N : usize> | |
| 210 | std::ops::Sub<&'b BTFN<F, G2, BT2, N>> for | |
| 211 | $lhs | |
| 212 | where BT1 : BTImpl<F, N, Data=usize>, | |
| 213 | G1 : SupportGenerator<F, N, Id=usize> + $($extra_trait)?, | |
| 214 | G2 : SupportGenerator<F, N, Id=usize> + Clone, | |
| 215 | G1::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 216 | G2::SupportType : LocalAnalysis<F, BT1::Agg, N>, | |
| 217 | /*&'b G2 : std::ops::Neg<Output=G2>*/ { | |
| 218 | ||
| 219 | type Output = BTFN<F, BothGenerators<G1, G2>, BT1, N>; | |
| 220 | #[inline] | |
| 221 | fn sub(self, other : &'b BTFN<F, G2, BT2, N>) -> Self::Output { | |
| 222 | // FIXME: the compiler crashes in an overflow on this. | |
| 223 | //$preprocess(self).add_another(std::ops::Neg::neg(&other.generator)) | |
| 224 | $preprocess(self).add_another(other.generator.clone().neg()) | |
| 225 | } | |
| 226 | } | |
| 227 | } | |
| 228 | } | |
| 229 | ||
| 230 | make_btfn_sub!(BTFN<F, G1, BT1, N>, std::convert::identity, ); | |
| 231 | make_btfn_sub!(&'a BTFN<F, G1, BT1, N>, Clone::clone, Clone); | |
| 232 | ||
| 233 | macro_rules! make_btfn_scalarop_rhs { | |
| 234 | ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { | |
| 235 | impl<F : Float, G, BT, const N : usize> | |
| 236 | std::ops::$trait_assign<F> | |
| 237 | for BTFN<F, G, BT, N> | |
| 238 | where BT : BTImpl<F, N>, | |
| 239 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 240 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 241 | #[inline] | |
| 242 | fn $fn_assign(&mut self, t : F) { | |
| 243 | self.generator.$fn_assign(t); | |
| 244 | self.refresh_aggregator(); | |
| 245 | } | |
| 246 | } | |
| 247 | ||
| 248 | impl<F : Float, G, BT, const N : usize> | |
| 249 | std::ops::$trait<F> | |
| 250 | for BTFN<F, G, BT, N> | |
| 251 | where BT : BTImpl<F, N>, | |
| 252 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 253 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 254 | type Output = Self; | |
| 255 | #[inline] | |
| 256 | fn $fn(mut self, t : F) -> Self::Output { | |
| 257 | self.generator.$fn_assign(t); | |
| 258 | self.refresh_aggregator(); | |
| 259 | self | |
| 260 | } | |
| 261 | } | |
| 262 | ||
| 263 | impl<'a, F : Float, G, BT, const N : usize> | |
| 264 | std::ops::$trait<F> | |
| 265 | for &'a BTFN<F, G, BT, N> | |
| 266 | where BT : BTImpl<F, N>, | |
| 267 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 268 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 269 | &'a G : std::ops::$trait<F,Output=G> { | |
| 270 | type Output = BTFN<F, G, BT, N>; | |
| 271 | #[inline] | |
| 272 | fn $fn(self, t : F) -> Self::Output { | |
| 273 | self.new_generator(self.generator.$fn(t)) | |
| 274 | } | |
| 275 | } | |
| 276 | } | |
| 277 | } | |
| 278 | ||
| 279 | make_btfn_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); | |
| 280 | make_btfn_scalarop_rhs!(Div, div, DivAssign, div_assign); | |
| 281 | ||
| 282 | macro_rules! make_btfn_scalarop_lhs { | |
| 283 | ($trait:ident, $fn:ident, $fn_assign:ident, $($f:ident)+) => { $( | |
| 284 | impl<G, BT, const N : usize> | |
| 285 | std::ops::$trait<BTFN<$f, G, BT, N>> | |
| 286 | for $f | |
| 287 | where BT : BTImpl<$f, N>, | |
| 288 | G : SupportGenerator<$f, N, Id=BT::Data>, | |
| 289 | G::SupportType : LocalAnalysis<$f, BT::Agg, N> { | |
| 290 | type Output = BTFN<$f, G, BT, N>; | |
| 291 | #[inline] | |
| 292 | fn $fn(self, mut a : BTFN<$f, G, BT, N>) -> Self::Output { | |
| 293 | a.generator.$fn_assign(self); | |
| 294 | a.refresh_aggregator(); | |
| 295 | a | |
| 296 | } | |
| 297 | } | |
| 298 | ||
| 299 | impl<'a, G, BT, const N : usize> | |
| 300 | std::ops::$trait<&'a BTFN<$f, G, BT, N>> | |
| 301 | for $f | |
| 302 | where BT : BTImpl<$f, N>, | |
| 303 | G : SupportGenerator<$f, N, Id=BT::Data> + Clone, | |
| 304 | G::SupportType : LocalAnalysis<$f, BT::Agg, N>, | |
| 305 | // FIXME: This causes compiler overflow | |
| 306 | /*&'a G : std::ops::$trait<$f,Output=G>*/ { | |
| 307 | type Output = BTFN<$f, G, BT, N>; | |
| 308 | #[inline] | |
| 309 | fn $fn(self, a : &'a BTFN<$f, G, BT, N>) -> Self::Output { | |
| 310 | let mut tmp = a.generator.clone(); | |
| 311 | tmp.$fn_assign(self); | |
| 312 | a.new_generator(tmp) | |
| 313 | // FIXME: Prevented by the compiler overflow above. | |
| 314 | //a.new_generator(a.generator.$fn(a)) | |
| 315 | } | |
| 316 | } | |
| 317 | )+ } | |
| 318 | } | |
| 319 | ||
| 320 | make_btfn_scalarop_lhs!(Mul, mul, mul_assign, f32 f64); | |
| 321 | make_btfn_scalarop_lhs!(Div, div, div_assign, f32 f64); | |
| 322 | ||
| 323 | macro_rules! make_btfn_unaryop { | |
| 324 | ($trait:ident, $fn:ident) => { | |
| 325 | impl<F : Float, G, BT, const N : usize> | |
| 326 | std::ops::$trait | |
| 327 | for BTFN<F, G, BT, N> | |
| 328 | where BT : BTImpl<F, N>, | |
| 329 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 330 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 331 | type Output = Self; | |
| 332 | #[inline] | |
| 333 | fn $fn(mut self) -> Self::Output { | |
| 334 | self.generator = self.generator.$fn(); | |
| 335 | self.refresh_aggregator(); | |
| 336 | self | |
| 337 | } | |
| 338 | } | |
| 339 | ||
| 340 | /*impl<'a, F : Float, G, BT, const N : usize> | |
| 341 | std::ops::$trait | |
| 342 | for &'a BTFN<F, G, BT, N> | |
| 343 | where BT : BTImpl<F, N>, | |
| 344 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 345 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 346 | &'a G : std::ops::$trait<Output=G> { | |
| 347 | type Output = BTFN<F, G, BT, N>; | |
| 348 | #[inline] | |
| 349 | fn $fn(self) -> Self::Output { | |
| 350 | self.new_generator(std::ops::$trait::$fn(&self.generator)) | |
| 351 | } | |
| 352 | }*/ | |
| 353 | } | |
| 354 | } | |
| 355 | ||
| 356 | make_btfn_unaryop!(Neg, neg); | |
| 357 | ||
| 358 | ||
| 359 | ||
| 360 | // | |
| 361 | // Mapping | |
| 362 | // | |
| 363 | ||
| 364 | impl<'a, F : Float, G, BT, V, const N : usize> Mapping<&'a Loc<F,N>> | |
| 365 | for BTFN<F, G, BT, N> | |
| 366 | where BT : BTImpl<F, N>, | |
| 367 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 368 | G::SupportType : LocalAnalysis<F, BT::Agg, N> + Mapping<&'a Loc<F,N>, Codomain = V>, | |
| 369 | V : Sum { | |
| 370 | ||
| 371 | type Codomain = V; | |
| 372 | ||
| 373 | fn value(&self, x : &'a Loc<F,N>) -> Self::Codomain { | |
| 374 | self.bt.iter_at(x).map(|&d| self.support_for(d).value(x)).sum() | |
| 375 | } | |
| 376 | } | |
| 377 | ||
| 378 | impl<F : Float, G, BT, V, const N : usize> Mapping<Loc<F,N>> | |
| 379 | for BTFN<F, G, BT, N> | |
| 380 | where BT : BTImpl<F, N>, | |
| 381 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 382 | G::SupportType : LocalAnalysis<F, BT::Agg, N> + Mapping<Loc<F,N>, Codomain = V>, | |
| 383 | V : Sum { | |
| 384 | ||
| 385 | type Codomain = V; | |
| 386 | ||
| 387 | fn value(&self, x : Loc<F,N>) -> Self::Codomain { | |
| 388 | self.bt.iter_at(&x).map(|&d| self.support_for(d).value(x)).sum() | |
| 389 | } | |
| 390 | } | |
| 391 | ||
| 392 | impl<F : Float, G, BT, const N : usize> GlobalAnalysis<F, BT::Agg> | |
| 393 | for BTFN<F, G, BT, N> | |
| 394 | where BT : BTImpl<F, N>, | |
| 395 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 396 | G::SupportType : LocalAnalysis<F, BT::Agg, N> { | |
| 397 | ||
| 398 | #[inline] | |
| 399 | fn global_analysis(&self) -> BT::Agg { | |
| 400 | self.bt.global_analysis() | |
| 401 | } | |
| 402 | } | |
| 403 | ||
| 404 | // | |
| 405 | // Blanket implementation of BTFN as a linear functional over objects | |
| 406 | // that are linear functionals over BTFN. | |
| 407 | // | |
| 408 | ||
| 409 | impl<X, F : Float, G, BT, const N : usize> Linear<X> | |
| 410 | for BTFN<F, G, BT, N> | |
| 411 | where BT : BTImpl<F, N>, | |
| 412 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 413 | G::SupportType : LocalAnalysis<F, BT::Agg, N>, | |
| 414 | X : Linear<BTFN<F, G, BT, N>, Codomain=F> { | |
| 415 | type Codomain = F; | |
| 416 | ||
| 417 | #[inline] | |
| 418 | fn apply(&self, x : &X) -> F { | |
| 419 | x.apply(self) | |
| 420 | } | |
| 421 | } | |
| 422 | ||
| 423 | /// Helper trait for performing approximate minimisation using P2 elements. | |
| 424 | pub trait P2Minimise<U, F : Float> : Set<U> { | |
| 425 | fn p2_minimise<G : Fn(&U) -> F>(&self, g : G) -> (U, F); | |
| 426 | ||
| 427 | } | |
| 428 | ||
| 429 | impl<F : Float> P2Minimise<Loc<F, 1>, F> for Cube<F, 1> { | |
| 430 | fn p2_minimise<G : Fn(&Loc<F, 1>) -> F>(&self, g : G) -> (Loc<F, 1>, F) { | |
| 431 | let interval = Simplex(self.corners()); | |
| 432 | interval.p2_model(&g).minimise(&interval) | |
| 433 | } | |
| 434 | } | |
| 435 | ||
| 436 | #[replace_float_literals(F::cast_from(literal))] | |
| 437 | impl<F : Float> P2Minimise<Loc<F, 2>, F> for Cube<F, 2> { | |
| 438 | fn p2_minimise<G : Fn(&Loc<F, 2>) -> F>(&self, g : G) -> (Loc<F, 2>, F) { | |
| 439 | if false { | |
| 440 | // Split into two triangle (simplex) with separate P2 model in each. | |
| 441 | // The six nodes of each triangle are the corners and the edges. | |
| 442 | let [a, b, c, d] = self.corners(); | |
| 443 | let [va, vb, vc, vd] = [g(&a), g(&b), g(&c), g(&d)]; | |
| 444 | ||
| 445 | let ab = midpoint(&a, &b); | |
| 446 | let bc = midpoint(&b, &c); | |
| 447 | let ca = midpoint(&c, &a); | |
| 448 | let cd = midpoint(&c, &d); | |
| 449 | let da = midpoint(&d, &a); | |
| 450 | let [vab, vbc, vca, vcd, vda] = [g(&ab), g(&bc), g(&ca), g(&cd), g(&da)]; | |
| 451 | ||
| 452 | let s1 = Simplex([a, b, c]); | |
| 453 | let m1 = P2LocalModel::<F, 2, 3, 3, 3>::new( | |
| 454 | &[a, b, c, ab, bc, ca], | |
| 455 | &[va, vb, vc, vab, vbc, vca] | |
| 456 | ); | |
| 457 | ||
| 458 | let r1@(_, v1) = m1.minimise(&s1); | |
| 459 | ||
| 460 | let s2 = Simplex([c, d, a]); | |
| 461 | let m2 = P2LocalModel::<F, 2, 3, 3, 3>::new( | |
| 462 | &[c, d, a, cd, da, ca], | |
| 463 | &[vc, vd, va, vcd, vda, vca] | |
| 464 | ); | |
| 465 | ||
| 466 | let r2@(_, v2) = m2.minimise(&s2); | |
| 467 | ||
| 468 | if v1 < v2 { r1 } else { r2 } | |
| 469 | } else { | |
| 470 | // Single P2 model for the entire cube. | |
| 471 | let [a, b, c, d] = self.corners(); | |
| 472 | let [va, vb, vc, vd] = [g(&a), g(&b), g(&c), g(&d)]; | |
| 473 | let [e, f] = match 'r' { | |
| 474 | 'm' => [(&a + &b + &c) / 3.0, (&c + &d + &a) / 3.0], | |
| 475 | 'c' => [midpoint(&a, &b), midpoint(&a, &d)], | |
| 476 | 'w' => [(&a + &b * 2.0) / 3.0, (&a + &d * 2.0) / 3.0], | |
| 477 | 'r' => { | |
| 478 | // Pseudo-randomise edge midpoints | |
| 479 | let Loc([x, y]) = a; | |
| 480 | let tmp : f64 = (x+y).as_(); | |
| 481 | match tmp.to_bits() % 4 { | |
| 482 | 0 => [midpoint(&a, &b), midpoint(&a, &d)], | |
| 483 | 1 => [midpoint(&c, &d), midpoint(&a, &d)], | |
| 484 | 2 => [midpoint(&a, &b), midpoint(&b, &c)], | |
| 485 | _ => [midpoint(&c, &d), midpoint(&b, &c)], | |
| 486 | } | |
| 487 | }, | |
| 488 | _ => [self.center(), (&a + &b) / 2.0], | |
| 489 | }; | |
| 490 | let [ve, vf] = [g(&e), g(&f)]; | |
| 491 | ||
| 492 | let m1 = P2LocalModel::<F, 2, 3, 3, 3>::new( | |
| 493 | &[a, b, c, d, e, f], | |
| 494 | &[va, vb, vc, vd, ve, vf], | |
| 495 | ); | |
| 496 | ||
| 497 | m1.minimise(self) | |
| 498 | } | |
| 499 | } | |
| 500 | } | |
| 501 | ||
| 502 | struct RefineMax; | |
| 503 | struct RefineMin; | |
| 504 | ||
| 505 | /// TODO: update doc. | |
| 506 | /// Simple refiner that keeps the difference between upper and lower bounds | |
| 507 | /// of [`Bounded`] functions within $ε$. The functions have to also be continuous | |
| 508 | /// for this refiner to ever succeed. | |
| 509 | /// The type parameter `T` should be either [`RefineMax`] or [`RefineMin`]. | |
| 510 | struct P2Refiner<F : Float, T> { | |
| 511 | bound : Option<F>, | |
| 512 | tolerance : F, | |
| 513 | max_steps : usize, | |
| 514 | #[allow(dead_code)] // `how` is just for type system purposes. | |
| 515 | how : T, | |
| 516 | } | |
| 517 | ||
| 518 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 519 | for P2Refiner<F, RefineMax> | |
| 520 | where Cube<F, N> : P2Minimise<Loc<F, N>, F>, | |
| 521 | G : SupportGenerator<F, N>, | |
| 522 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 523 | + LocalAnalysis<F, Bounds<F>, N> { | |
| 524 | type Result = Option<(Loc<F, N>, F)>; | |
| 525 | type Sorting = UpperBoundSorting<F>; | |
| 526 | ||
| 527 | fn refine( | |
| 528 | &self, | |
| 529 | aggregator : &Bounds<F>, | |
| 530 | cube : &Cube<F, N>, | |
| 531 | data : &Vec<G::Id>, | |
| 532 | generator : &G, | |
| 533 | step : usize | |
| 534 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 535 | // g gives the negative of the value of the function presented by `data` and `generator`. | |
| 536 | let g = move |x : &Loc<F,N>| { | |
| 537 | let f = move |&d| generator.support_for(d).value(x); | |
| 538 | -data.iter().map(f).sum::<F>() | |
| 539 | }; | |
| 540 | // … so the negative of the minimum is the maximm we want. | |
| 541 | let (x, neg_v) = cube.p2_minimise(g); | |
| 542 | let v = -neg_v; | |
| 543 | ||
| 544 | if self.bound.map_or(false, |b| aggregator.upper() <= b + self.tolerance) { | |
| 545 | // The upper bound is below the maximisation threshold. Don't bother with this cube. | |
| 546 | RefinerResult::Uncertain(*aggregator, None) | |
| 547 | } else if step < self.max_steps && (aggregator.upper() - v).abs() > self.tolerance { | |
| 548 | // The function isn't refined enough in `cube`, so return None | |
| 549 | // to indicate that further subdivision is required. | |
| 550 | RefinerResult::NeedRefinement | |
| 551 | } else { | |
| 552 | // The data is refined enough, so return new hopefully better bounds | |
| 553 | // and the maximiser. | |
| 554 | let res = (x, v); | |
| 555 | let bounds = Bounds(aggregator.lower(), v); | |
| 556 | RefinerResult::Uncertain(bounds, Some(res)) | |
| 557 | } | |
| 558 | } | |
| 559 | } | |
| 560 | ||
| 561 | ||
| 562 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 563 | for P2Refiner<F, RefineMin> | |
| 564 | where Cube<F, N> : P2Minimise<Loc<F, N>, F>, | |
| 565 | G : SupportGenerator<F, N>, | |
| 566 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 567 | + LocalAnalysis<F, Bounds<F>, N> { | |
| 568 | type Result = Option<(Loc<F, N>, F)>; | |
| 569 | type Sorting = LowerBoundSorting<F>; | |
| 570 | ||
| 571 | fn refine( | |
| 572 | &self, | |
| 573 | aggregator : &Bounds<F>, | |
| 574 | cube : &Cube<F, N>, | |
| 575 | data : &Vec<G::Id>, | |
| 576 | generator : &G, | |
| 577 | step : usize | |
| 578 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 579 | // g gives the value of the function presented by `data` and `generator`. | |
| 580 | let g = move |x : &Loc<F,N>| { | |
| 581 | let f = move |&d| generator.support_for(d).value(x); | |
| 582 | data.iter().map(f).sum::<F>() | |
| 583 | }; | |
| 584 | // Minimise it. | |
| 585 | let (x, v) = cube.p2_minimise(g); | |
| 586 | ||
| 587 | if self.bound.map_or(false, |b| aggregator.lower() >= b - self.tolerance) { | |
| 588 | // The lower bound is above the minimisation threshold. Don't bother with this cube. | |
| 589 | RefinerResult::Uncertain(*aggregator, None) | |
| 590 | } else if step < self.max_steps && (aggregator.lower() - v).abs() > self.tolerance { | |
| 591 | // The function isn't refined enough in `cube`, so return None | |
| 592 | // to indicate that further subdivision is required. | |
| 593 | RefinerResult::NeedRefinement | |
| 594 | } else { | |
| 595 | // The data is refined enough, so return new hopefully better bounds | |
| 596 | // and the minimiser. | |
| 597 | let res = (x, v); | |
| 598 | let bounds = Bounds(v, aggregator.upper()); | |
| 599 | RefinerResult::Uncertain(bounds, Some(res)) | |
| 600 | } | |
| 601 | } | |
| 602 | } | |
| 603 | ||
| 604 | ||
| 605 | ||
| 606 | struct BoundRefiner<F : Float, T> { | |
| 607 | bound : F, | |
| 608 | tolerance : F, | |
| 609 | max_steps : usize, | |
| 610 | #[allow(dead_code)] // `how` is just for type system purposes. | |
| 611 | how : T, | |
| 612 | } | |
| 613 | ||
| 614 | impl<F : Float, G, const N : usize> Refiner<F, Bounds<F>, G, N> | |
| 615 | for BoundRefiner<F, RefineMax> | |
| 616 | where G : SupportGenerator<F, N> { | |
| 617 | type Result = bool; | |
| 618 | type Sorting = UpperBoundSorting<F>; | |
| 619 | ||
| 620 | fn refine( | |
| 621 | &self, | |
| 622 | aggregator : &Bounds<F>, | |
| 623 | _cube : &Cube<F, N>, | |
| 624 | _data : &Vec<G::Id>, | |
| 625 | _generator : &G, | |
| 626 | step : usize | |
| 627 | ) -> RefinerResult<Bounds<F>, Self::Result> { | |
| 628 | if aggregator.upper() <= self.bound + self.tolerance { | |
| 629 | // Below upper bound within tolerances. Indicate uncertain success. | |
| 630 | RefinerResult::Uncertain(*aggregator, true) | |
| 631 | } else if aggregator.lower() >= self.bound - self.tolerance { | |
| 632 | // Above upper bound within tolerances. Indicate certain failure. | |
| 633 | RefinerResult::Certain(false) | |
| 634 | } else if step < self.max_steps { | |
| 635 | // No decision possible, but within step bounds - further subdivision is required. | |
| 636 | RefinerResult::NeedRefinement | |
| 637 | } else { | |
| 638 | // No decision possible, but past step bounds | |
| 639 | RefinerResult::Uncertain(*aggregator, false) | |
| 640 | } | |
| 641 | } | |
| 642 | } | |
| 643 | ||
| 644 | ||
| 645 | impl<F : Float, G, BT, const N : usize> BTFN<F, G, BT, N> | |
| 646 | where BT : BTSearch<F, N, Agg=Bounds<F>>, | |
| 647 | G : SupportGenerator<F, N, Id=BT::Data>, | |
| 648 | G::SupportType : for<'a> Mapping<&'a Loc<F,N>,Codomain=F> | |
| 649 | + LocalAnalysis<F, Bounds<F>, N>, | |
| 650 | Cube<F, N> : P2Minimise<Loc<F, N>, F> { | |
| 651 | ||
| 652 | /// Try to maximise the BTFN within stated value `tolerance`, taking at most `max_steps` | |
| 653 | /// refinement steps. Returns the maximiser and the maximum value. | |
| 654 | pub fn maximise(&mut self, tolerance : F, max_steps : usize) -> (Loc<F, N>, F) { | |
| 655 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMax, bound : None }; | |
| 656 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.").unwrap() | |
| 657 | } | |
| 658 | ||
| 659 | /// Try to maximise the BTFN within stated value `tolerance`, taking at most `max_steps` | |
| 660 | /// refinement steps. Returns the maximiser and the maximum value when one is found above | |
| 661 | /// the `bound` threshold, otherwise `None`. | |
| 662 | pub fn maximise_above(&mut self, bound : F, tolerance : F, max_steps : usize) | |
| 663 | -> Option<(Loc<F, N>, F)> { | |
| 664 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMax, bound : Some(bound) }; | |
| 665 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 666 | } | |
| 667 | ||
| 668 | /// Try to minimise the BTFN within stated value `tolerance`, taking at most `max_steps` | |
| 669 | /// refinement steps. Returns the minimiser and the minimum value. | |
| 670 | pub fn minimise(&mut self, tolerance : F, max_steps : usize) -> (Loc<F, N>, F) { | |
| 671 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMin, bound : None }; | |
| 672 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.").unwrap() | |
| 673 | } | |
| 674 | ||
| 675 | /// Try to minimise the BTFN within stated value `tolerance`, taking at most `max_steps` | |
| 676 | /// refinement steps. Returns the minimiser and the minimum value when one is found below | |
| 677 | /// the `bound` threshold, otherwise `None`. | |
| 678 | pub fn minimise_below(&mut self, bound : F, tolerance : F, max_steps : usize) | |
| 679 | -> Option<(Loc<F, N>, F)> { | |
| 680 | let refiner = P2Refiner{ tolerance, max_steps, how : RefineMin, bound : Some(bound) }; | |
| 681 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 682 | } | |
| 683 | /// Verify that the BTFN is has stated upper `bound` within stated `tolerance, taking at most | |
| 684 | /// `max_steps` refinment steps. | |
| 685 | pub fn has_upper_bound(&mut self, bound : F, tolerance : F, max_steps : usize) -> bool { | |
| 686 | let refiner = BoundRefiner{ bound, tolerance, max_steps, how : RefineMax }; | |
| 687 | self.bt.search_and_refine(&refiner, &self.generator).expect("Refiner failure.") | |
| 688 | } | |
| 689 | } |