Mon, 24 Oct 2022 09:41:43 +0300
Allow step closure of AlgIterators to indicate succesfull termination or failure.
| 0 | 1 | use crate::types::*; |
| 2 | use crate::loc::Loc; | |
| 3 | use crate::sets::{Set,NPolygon,SpannedHalfspace}; | |
| 4 | use crate::linsolve::*; | |
| 5 | use crate::norms::Dot; | |
| 6 | use super::base::{LocalModel,RealLocalModel}; | |
| 7 | use crate::sets::Cube; | |
| 8 | use numeric_literals::replace_float_literals; | |
| 9 | ||
| 10 | pub struct Simplex<F : Float, const N : usize, const D : usize>(pub [Loc<F, N>; D]); | |
| 11 | pub type PlanarSimplex<F> = Simplex<F,2,3>; | |
| 12 | pub type RealInterval<F> = Simplex<F,1,2>; | |
| 13 | ||
| 14 | #[inline] | |
| 15 | #[replace_float_literals(F::cast_from(literal))] | |
| 16 | pub(crate) fn midpoint<F : Float, const N : usize>(a : &Loc<F,N>, b : &Loc<F,N>) -> Loc<F, N> { | |
| 17 | (a+b)/2.0 | |
| 18 | } | |
| 19 | ||
| 20 | impl<'a, F : Float> Set<Loc<F,1>> for RealInterval<F> { | |
| 21 | #[inline] | |
| 22 | fn contains(&self, &Loc([x]) : &Loc<F,1>) -> bool { | |
| 23 | let &[Loc([x0]), Loc([x1])] = &self.0; | |
| 24 | (x0 < x && x < x1) || (x1 < x && x < x0) | |
| 25 | } | |
| 26 | } | |
| 27 | ||
| 28 | impl<'a, F : Float> Set<Loc<F,2>> for PlanarSimplex<F> { | |
| 29 | #[inline] | |
| 30 | fn contains(&self, x : &Loc<F,2>) -> bool { | |
| 31 | let &[x0, x1, x2] = &self.0; | |
| 32 | NPolygon([[x0, x1].spanned_halfspace(), | |
| 33 | [x1, x2].spanned_halfspace(), | |
| 34 | [x2, x0].spanned_halfspace()]).contains(x) | |
| 35 | } | |
| 36 | } | |
| 37 | ||
| 38 | trait P2Powers { | |
| 39 | type Output; | |
| 40 | type Diff; | |
| 41 | type Full; | |
| 42 | fn p2powers(&self) -> Self::Output; | |
| 43 | fn p2powers_full(&self) -> Self::Full; | |
| 44 | fn p2powers_diff(&self) -> Self::Diff; | |
| 45 | } | |
| 46 | ||
| 47 | #[replace_float_literals(F::cast_from(literal))] | |
| 48 | impl<F : Float> P2Powers for Loc<F, 1> { | |
| 49 | type Output = Loc<F, 1>; | |
| 50 | type Full = Loc<F, 3>; | |
| 51 | type Diff = Loc<Loc<F, 1>, 1>; | |
| 52 | ||
| 53 | #[inline] | |
| 54 | fn p2powers(&self) -> Self::Output { | |
| 55 | let &Loc([x0]) = self; | |
| 56 | [x0*x0].into() | |
| 57 | } | |
| 58 | ||
| 59 | #[inline] | |
| 60 | fn p2powers_full(&self) -> Self::Full { | |
| 61 | let &Loc([x0]) = self; | |
| 62 | [1.0, x0, x0*x0].into() | |
| 63 | } | |
| 64 | ||
| 65 | #[inline] | |
| 66 | fn p2powers_diff(&self) -> Self::Diff { | |
| 67 | let &Loc([x0]) = self; | |
| 68 | [[x0+x0].into()].into() | |
| 69 | } | |
| 70 | } | |
| 71 | ||
| 72 | #[replace_float_literals(F::cast_from(literal))] | |
| 73 | impl<F : Float> P2Powers for Loc<F, 2> { | |
| 74 | type Output = Loc<F, 3>; | |
| 75 | type Full = Loc<F, 6>; | |
| 76 | type Diff = Loc<Loc<F, 3>, 2>; | |
| 77 | ||
| 78 | #[inline] | |
| 79 | fn p2powers(&self) -> Self::Output { | |
| 80 | let &Loc([x0, x1]) = self; | |
| 81 | [x0*x0, x0*x1, x1*x1].into() | |
| 82 | } | |
| 83 | ||
| 84 | #[inline] | |
| 85 | fn p2powers_full(&self) -> Self::Full { | |
| 86 | let &Loc([x0, x1]) = self; | |
| 87 | [1.0, x0, x1, x0*x0, x0*x1, x1*x1].into() | |
| 88 | } | |
| 89 | ||
| 90 | #[inline] | |
| 91 | fn p2powers_diff(&self) -> Self::Diff { | |
| 92 | let &Loc([x0, x1]) = self; | |
| 93 | [[x0+x0, x1, 0.0].into(), [0.0, x0, x1+x1].into()].into() | |
| 94 | } | |
| 95 | } | |
| 96 | ||
| 97 | pub trait P2Model<F : Num, const N : usize> { | |
| 98 | type Model : LocalModel<Loc<F,N>,F>; | |
| 99 | fn p2_model<G : Fn(&Loc<F, N>) -> F>(&self, g : G) -> Self::Model; | |
| 100 | } | |
| 101 | ||
| 102 | pub struct P2LocalModel<F : Num, const N : usize, const E : usize, const V : usize, const Q : usize> { | |
| 103 | a0 : F, | |
| 104 | a1 : Loc<F, N>, | |
| 105 | a2 : Loc<F, E>, | |
| 106 | //node_values : Loc<F, V>, | |
| 107 | //edge_values : Loc<F, Q>, | |
| 108 | } | |
| 109 | ||
| 110 | // | |
| 111 | // 1D planar model construction | |
| 112 | // | |
| 113 | ||
| 114 | impl<F : Float> RealInterval<F> { | |
| 115 | #[inline] | |
| 116 | fn midpoints(&self) -> [Loc<F, 1>; 1] { | |
| 117 | let [ref n0, ref n1] = &self.0; | |
| 118 | let n01 = midpoint(n0, n1); | |
| 119 | [n01] | |
| 120 | } | |
| 121 | } | |
| 122 | ||
| 123 | impl<F : Float> P2LocalModel<F, 1, 1, 2, 0> { | |
| 124 | #[inline] | |
| 125 | pub fn new( | |
| 126 | &[n0, n1, n01] : &[Loc<F, 1>; 3], | |
| 127 | &[v0, v1, v01] : &[F; 3], | |
| 128 | ) -> Self { | |
| 129 | let p = move |x : &Loc<F, 1>, v : F| { | |
| 130 | let Loc([c, d, e]) = x.p2powers_full(); | |
| 131 | [c, d, e, v] | |
| 132 | }; | |
| 133 | let [a0, a1, a11] = linsolve([ | |
| 134 | p(&n0, v0), | |
| 135 | p(&n1, v1), | |
| 136 | p(&n01, v01) | |
| 137 | ]); | |
| 138 | P2LocalModel { | |
| 139 | a0 : a0, | |
| 140 | a1 : [a1].into(), | |
| 141 | a2 : [a11].into(), | |
| 142 | //node_values : [v0, v1].into(), | |
| 143 | //edge_values: [].into(), | |
| 144 | } | |
| 145 | } | |
| 146 | } | |
| 147 | ||
| 148 | impl<F : Float> P2Model<F,1> for RealInterval<F> { | |
| 149 | type Model = P2LocalModel<F, 1, 1, 2, 0>; | |
| 150 | ||
| 151 | #[inline] | |
| 152 | fn p2_model<G : Fn(&Loc<F, 1>) -> F>(&self, g : G) -> Self::Model { | |
| 153 | let [n01] = self.midpoints(); | |
| 154 | let [n0, n1] = self.0; | |
| 155 | let vals = [g(&n0), g(&n1), g(&n01)]; | |
| 156 | let nodes = [n0, n1, n01]; | |
| 157 | Self::Model::new(&nodes, &vals) | |
| 158 | } | |
| 159 | } | |
| 160 | ||
| 161 | // | |
| 162 | // 2D planar model construction | |
| 163 | // | |
| 164 | ||
| 165 | impl<F : Float> PlanarSimplex<F> { | |
| 166 | #[inline] | |
| 167 | fn midpoints(&self) -> [Loc<F, 2>; 3] { | |
| 168 | let [ref n0, ref n1, ref n2] = &self.0; | |
| 169 | let n01 = midpoint(n0, n1); | |
| 170 | let n12 = midpoint(n1, n2); | |
| 171 | let n20 = midpoint(n2, n0); | |
| 172 | [n01, n12, n20] | |
| 173 | } | |
| 174 | } | |
| 175 | ||
| 176 | impl<F : Float> P2LocalModel<F, 2, 3, 3, 3> { | |
| 177 | #[inline] | |
| 178 | pub fn new( | |
| 179 | &[n0, n1, n2, n01, n12, n20] : &[Loc<F, 2>; 6], | |
| 180 | &[v0, v1, v2, v01, v12, v20] : &[F; 6], | |
| 181 | ) -> Self { | |
| 182 | let p = move |x : &Loc<F,2>, v :F| { | |
| 183 | let Loc([c, d, e, f, g, h]) = x.p2powers_full(); | |
| 184 | [c, d, e, f, g, h, v] | |
| 185 | }; | |
| 186 | let [a0, a1, a2, a11, a12, a22] = linsolve([ | |
| 187 | p(&n0, v0), | |
| 188 | p(&n1, v1), | |
| 189 | p(&n2, v2), | |
| 190 | p(&n01, v01), | |
| 191 | p(&n12, v12), | |
| 192 | p(&n20, v20), | |
| 193 | ]); | |
| 194 | P2LocalModel { | |
| 195 | a0 : a0, | |
| 196 | a1 : [a1, a2].into(), | |
| 197 | a2 : [a11, a12, a22].into(), | |
| 198 | //node_values : [v0, v1, v2].into(), | |
| 199 | //edge_values: [v01, v12, v20].into(), | |
| 200 | } | |
| 201 | } | |
| 202 | } | |
| 203 | ||
| 204 | impl<F : Float> P2Model<F,2> for PlanarSimplex<F> { | |
| 205 | type Model = P2LocalModel<F, 2, 3, 3, 3>; | |
| 206 | ||
| 207 | #[inline] | |
| 208 | fn p2_model<G : Fn(&Loc<F, 2>) -> F>(&self, g : G) -> Self::Model { | |
| 209 | let midpoints = self.midpoints(); | |
| 210 | let [ref n0, ref n1, ref n2] = self.0; | |
| 211 | let [ref n01, ref n12, ref n20] = midpoints; | |
| 212 | let vals = [g(n0), g(n1), g(n2), g(n01), g(n12), g(n20)]; | |
| 213 | let nodes = [*n0, *n1, *n2, *n01, *n12, *n20]; | |
| 214 | Self::Model::new(&nodes, &vals) | |
| 215 | } | |
| 216 | } | |
| 217 | ||
| 218 | macro_rules! impl_local_model { | |
| 219 | ($n:literal, $e:literal, $v:literal, $q:literal) => { | |
| 220 | impl<F : Float> LocalModel<Loc<F, $n>, F> for P2LocalModel<F, $n, $e, $v, $q> { | |
| 221 | #[inline] | |
| 222 | fn value(&self, x : &Loc<F,$n>) -> F { | |
| 223 | self.a0 + x.dot(&self.a1) + x.p2powers().dot(&self.a2) | |
| 224 | } | |
| 225 | ||
| 226 | #[inline] | |
| 227 | fn differential(&self, x : &Loc<F,$n>) -> Loc<F,$n> { | |
| 228 | self.a1 + x.p2powers_diff().map(|di| di.dot(&self.a2)) | |
| 229 | } | |
| 230 | } | |
| 231 | } | |
| 232 | } | |
| 233 | ||
| 234 | impl_local_model!(1, 1, 2, 0); | |
| 235 | impl_local_model!(2, 3, 3, 3); | |
| 236 | ||
| 237 | ||
| 238 | // | |
| 239 | // Minimisation | |
| 240 | // | |
| 241 | ||
| 242 | #[replace_float_literals(F::cast_from(literal))] | |
| 243 | impl<F : Float> P2LocalModel<F, 1, 1, 2, 0> { | |
| 244 | #[inline] | |
| 245 | fn minimise_edge(&self, x0 : Loc<F, 1>, x1 : Loc<F,1>) -> (Loc<F,1>, F) { | |
| 246 | let &P2LocalModel{ | |
| 247 | a1 : Loc([a1]), | |
| 248 | a2 : Loc([a11]), | |
| 249 | //node_values : Loc([v0, v1]), | |
| 250 | .. | |
| 251 | } = self; | |
| 252 | // We do this in cases, first trying for an interior solution, then edges. | |
| 253 | // For interior solution, first check determinant; no point trying if non-positive | |
| 254 | if a11 > 0.0 { | |
| 255 | // An interior solution x[1] has to satisfy | |
| 256 | // 2a₁₁*x[1] + a₁ =0 | |
| 257 | // This gives | |
| 258 | let t = -a1/(2.0*a11); | |
| 259 | let (Loc([t0]), Loc([t1])) = (x0, x1); | |
| 260 | if (t0 <= t && t <= t1) || (t1 <= t && t <= t0) { | |
| 261 | let x = [t].into(); | |
| 262 | let v = self.value(&x); | |
| 263 | return (x, v) | |
| 264 | } | |
| 265 | } | |
| 266 | ||
| 267 | let v0 = self.value(&x0); | |
| 268 | let v1 = self.value(&x1); | |
| 269 | if v0 < v1 { (x0, v0) } else { (x1, v1) } | |
| 270 | } | |
| 271 | } | |
| 272 | ||
| 273 | impl<'a, F : Float> RealLocalModel<RealInterval<F>,Loc<F,1>,F> | |
| 274 | for P2LocalModel<F, 1, 1, 2, 0> { | |
| 275 | #[inline] | |
| 276 | fn minimise(&self, &Simplex([x0, x1]) : &RealInterval<F>) -> (Loc<F,1>, F) { | |
| 277 | self.minimise_edge(x0, x1) | |
| 278 | } | |
| 279 | } | |
| 280 | ||
| 281 | #[replace_float_literals(F::cast_from(literal))] | |
| 282 | impl<F : Float> P2LocalModel<F, 2, 3, 3, 3> { | |
| 283 | /// Minimise the 2D model on the edge {x0 + t(x1 - x0) | t ∈ [0, 1] } | |
| 284 | #[inline] | |
| 285 | fn minimise_edge(&self, x0 : &Loc<F,2>, x1 : &Loc<F,2>/*, v0 : F, v1 : F*/) -> (Loc<F,2>, F) { | |
| 286 | let &P2LocalModel { | |
| 287 | a0, | |
| 288 | a1 : Loc([a1, a2]), | |
| 289 | a2 : Loc([a11, a12, a22]), | |
| 290 | .. | |
| 291 | } = self; | |
| 292 | let &Loc([x00, x01]) = x0; | |
| 293 | let d@Loc([d0, d1]) = x1 - x0; | |
| 294 | let b0 = a0 + a1*x00 + a2*x01 + a11*x00*x00 + a12*x00*x01 + a22*x01*x01; | |
| 295 | let b1 = a1*d0 + a2*d1 + 2.0*a11*d0*x00 + a12*(d0*x01 + d1*x00) + 2.0*a22*d1*x01; | |
| 296 | let b11 = a11*d0*d0 + a12*d0*d1 + a22*d1*d1; | |
| 297 | let edge_1d_model = P2LocalModel { | |
| 298 | a0 : b0, | |
| 299 | a1 : Loc([b1]), | |
| 300 | a2 : Loc([b11]), | |
| 301 | //node_values : Loc([v0, v1]), | |
| 302 | }; | |
| 303 | let (Loc([t]), v) = edge_1d_model.minimise_edge(0.0.into(), 1.0.into()); | |
| 304 | (x0 + d*t, v) | |
| 305 | } | |
| 306 | } | |
| 307 | ||
| 308 | #[replace_float_literals(F::cast_from(literal))] | |
| 309 | impl<'a, F : Float> RealLocalModel<PlanarSimplex<F>,Loc<F,2>,F> | |
| 310 | for P2LocalModel<F, 2, 3, 3, 3> { | |
| 311 | #[inline] | |
| 312 | fn minimise(&self, el : &PlanarSimplex<F>) -> (Loc<F,2>, F) { | |
| 313 | let &P2LocalModel { | |
| 314 | a1 : Loc([a1, a2]), | |
| 315 | a2 : Loc([a11, a12, a22]), | |
| 316 | //node_values : Loc([v0, v1, v2]), | |
| 317 | .. | |
| 318 | } = self; | |
| 319 | ||
| 320 | // We do this in cases, first trying for an interior solution, then edges. | |
| 321 | // For interior solution, first check determinant; no point trying if non-positive | |
| 322 | let r = 2.0*(a11*a22-a12*a12); | |
| 323 | if r > 0.0 { | |
| 324 | // An interior solution (x[1], x[2]) has to satisfy | |
| 325 | // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 | |
| 326 | // This gives | |
| 327 | let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); | |
| 328 | if el.contains(&x) { | |
| 329 | return (x, self.value(&x)) | |
| 330 | } | |
| 331 | } | |
| 332 | ||
| 333 | let &[ref x0, ref x1, ref x2] = &el.0; | |
| 334 | let mut min_edge = self.minimise_edge(x0, x1); | |
| 335 | let more_edge = [self.minimise_edge(x1, x2), | |
| 336 | self.minimise_edge(x2, x0)]; | |
| 337 | ||
| 338 | for edge in more_edge { | |
| 339 | if edge.1 < min_edge.1 { | |
| 340 | min_edge = edge; | |
| 341 | } | |
| 342 | } | |
| 343 | ||
| 344 | min_edge | |
| 345 | } | |
| 346 | } | |
| 347 | ||
| 348 | #[replace_float_literals(F::cast_from(literal))] | |
| 349 | impl<'a, F : Float> RealLocalModel<Cube<F, 2>,Loc<F,2>,F> | |
| 350 | for P2LocalModel<F, 2, 3, 3, 3> { | |
| 351 | #[inline] | |
| 352 | fn minimise(&self, el : &Cube<F, 2>) -> (Loc<F,2>, F) { | |
| 353 | let &P2LocalModel { | |
| 354 | a1 : Loc([a1, a2]), | |
| 355 | a2 : Loc([a11, a12, a22]), | |
| 356 | //node_values : Loc([v0, v1, v2]), | |
| 357 | .. | |
| 358 | } = self; | |
| 359 | ||
| 360 | // We do this in cases, first trying for an interior solution, then edges. | |
| 361 | // For interior solution, first check determinant; no point trying if non-positive | |
| 362 | let r = 2.0*(a11*a22-a12*a12); | |
| 363 | if r > 0.0 { | |
| 364 | // An interior solution (x[1], x[2]) has to satisfy | |
| 365 | // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 | |
| 366 | // This gives | |
| 367 | let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); | |
| 368 | if el.contains(&x) { | |
| 369 | return (x, self.value(&x)) | |
| 370 | } | |
| 371 | } | |
| 372 | ||
| 373 | let [x0, x1, x2, x3] = el.corners(); | |
| 374 | let mut min_edge = self.minimise_edge(&x0, &x1); | |
| 375 | let more_edge = [self.minimise_edge(&x1, &x2), | |
| 376 | self.minimise_edge(&x2, &x3), | |
| 377 | self.minimise_edge(&x3, &x0)]; | |
| 378 | ||
| 379 | for edge in more_edge { | |
| 380 | if edge.1 < min_edge.1 { | |
| 381 | min_edge = edge; | |
| 382 | } | |
| 383 | } | |
| 384 | ||
| 385 | min_edge | |
| 386 | } | |
| 387 | } | |
| 388 | ||
| 389 | // impl<F : Float> P2Model<F, 1> for Cube<F, 1> { | |
| 390 | // type Model = CubeP2LocalModel<F,1,1,1>; | |
| 391 | ||
| 392 | // fn p2_model<G : FnMut(&Loc<F, 1>) -> F>(&self, fun : &G) -> Self::Model { | |
| 393 | // CubeP2LocalModel([Simplex(self.corners()).p2_model(fun)]) | |
| 394 | // } | |
| 395 | // } | |
| 396 | ||
| 397 | // impl<F : Float> P2Model<F, 2> for Cube<F, 2> { | |
| 398 | // type Model = CubeP2LocalModel<F,2,3,2>; | |
| 399 | ||
| 400 | // fn p2_model<G : FnMut(&Loc<F, 2>) -> F>(&self, fun : &G) -> Self::Model { | |
| 401 | // let [a, b, c, d] = self.corners(); | |
| 402 | // CubeP2LocalModel([Simplex([a, b, c]).p2_model(fun), | |
| 403 | // Simplex([b, c, d]).p2_model(fun)]) | |
| 404 | // } | |
| 405 | // } | |
| 406 | ||
| 407 | ||
| 408 | #[cfg(test)] | |
| 409 | mod tests { | |
| 410 | use super::*; | |
| 411 | ||
| 412 | #[test] | |
| 413 | fn p2_model_1d_test() { | |
| 414 | let vertices = [Loc([0.0]), Loc([1.0])]; | |
| 415 | let domain = Simplex(vertices); | |
| 416 | // A simple quadratic function for which the approximation is exact on reals, | |
| 417 | // and appears exact on f64 as well. | |
| 418 | let f = |&Loc([x]) : &Loc<f64, 1>| x*x + x + 1.0; | |
| 419 | let model = domain.p2_model(f); | |
| 420 | let xs = [Loc([0.5]), Loc([0.25])]; | |
| 421 | ||
| 422 | for x in vertices.iter().chain(xs.iter()) { | |
| 423 | assert_eq!(model.value(&x), f(&x)); | |
| 424 | } | |
| 425 | ||
| 426 | assert_eq!(model.minimise(&domain), (Loc([0.0]), 1.0)); | |
| 427 | } | |
| 428 | ||
| 429 | #[test] | |
| 430 | fn p2_model_2d_test() { | |
| 431 | let vertices = [Loc([0.0, 0.0]), Loc([1.0, 0.0]), Loc([1.0, 1.0])]; | |
| 432 | let domain = Simplex(vertices); | |
| 433 | // A simple quadratic function for which the approximation is exact on reals, | |
| 434 | // and appears exact on f64 as well. | |
|
1
df3901ec2f5d
Fix some unit tests after fundamental changes that made them invalid
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
435 | let f = |&Loc([x, y]) : &Loc<f64, 2>| - (x*x + x*y + x - 2.0 * y + 1.0); |
| 0 | 436 | let model = domain.p2_model(f); |
| 437 | let xs = [Loc([0.5, 0.5]), Loc([0.25, 0.25])]; | |
| 438 | ||
| 439 | for x in vertices.iter().chain(xs.iter()) { | |
| 440 | assert_eq!(model.value(&x), f(&x)); | |
| 441 | } | |
| 442 | ||
|
1
df3901ec2f5d
Fix some unit tests after fundamental changes that made them invalid
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
443 | assert_eq!(model.minimise(&domain), (Loc([1.0, 0.0]), -3.0)); |
| 0 | 444 | } |
| 445 | } |