Fri, 13 Oct 2023 13:32:15 -0500
Update Cargo.lock to stop build failures with current nightly rust.
| 5 | 1 | /*! |
| 2 | Multi-dimensional cubes. | |
| 3 | ||
| 4 | This module provides the [`Cube`] type for multi-dimensional cubes $∏_{i=1}^N [a_i, b_i)$. | |
| 5 | ||
| 6 | As an example, to create a the two-dimensional cube $[0, 1] × [-1, 1]$, you can | |
| 7 | ``` | |
| 8 | # use alg_tools::sets::cube::Cube; | |
| 9 | let cube = Cube::new([[0.0, 1.0], [-1.0, 1.0]]); | |
| 10 | ``` | |
| 11 | or | |
| 12 | ``` | |
| 13 | # use alg_tools::sets::cube::Cube; | |
| 14 | # use alg_tools::types::float; | |
| 15 | let cube : Cube<float, 2> = [[0.0, 1.0], [-1.0, 1.0]].into(); | |
| 16 | ``` | |
| 17 | */ | |
| 0 | 18 | |
| 19 | use serde::ser::{Serialize, Serializer, SerializeTupleStruct}; | |
| 20 | use crate::types::*; | |
| 21 | use crate::loc::Loc; | |
| 22 | use crate::sets::SetOrd; | |
| 23 | use crate::maputil::{ | |
| 24 | FixedLength, | |
| 25 | FixedLengthMut, | |
| 26 | map1, | |
| 27 | map1_indexed, | |
| 28 | map2, | |
| 29 | }; | |
| 30 | ||
| 5 | 31 | /// A multi-dimensional cube $∏_{i=1}^N [a_i, b_i)$ with the starting and ending points |
| 32 | /// along $a_i$ and $b_i$ along each dimension of type `U`. | |
| 0 | 33 | #[derive(Copy, Clone, Debug, Eq, PartialEq)] |
| 34 | pub struct Cube<U : Num, const N : usize>(pub(super) [[U; 2]; N]); | |
| 35 | ||
| 36 | // Need to manually implement as [F; N] serialisation is provided only for some N. | |
| 37 | impl<F : Num + Serialize, const N : usize> Serialize for Cube<F, N> | |
| 38 | where | |
| 39 | F: Serialize, | |
| 40 | { | |
| 41 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> | |
| 42 | where | |
| 43 | S: Serializer, | |
| 44 | { | |
| 45 | let mut ts = serializer.serialize_tuple_struct("Cube", N)?; | |
| 46 | for e in self.0.iter() { | |
| 47 | ts.serialize_field(e)?; | |
| 48 | } | |
| 49 | ts.end() | |
| 50 | } | |
| 51 | } | |
| 52 | ||
| 53 | impl<A : Num, const N : usize> FixedLength<N> for Cube<A,N> { | |
| 54 | type Iter = std::array::IntoIter<[A; 2], N>; | |
| 55 | type Elem = [A; 2]; | |
| 56 | #[inline] | |
| 57 | fn fl_iter(self) -> Self::Iter { | |
| 58 | self.0.into_iter() | |
| 59 | } | |
| 60 | } | |
| 61 | ||
| 62 | impl<A : Num, const N : usize> FixedLengthMut<N> for Cube<A,N> { | |
| 63 | type IterMut<'a> = std::slice::IterMut<'a, [A; 2]>; | |
| 64 | #[inline] | |
| 65 | fn fl_iter_mut(&mut self) -> Self::IterMut<'_> { | |
| 66 | self.0.iter_mut() | |
| 67 | } | |
| 68 | } | |
| 69 | ||
| 70 | impl<'a, A : Num, const N : usize> FixedLength<N> for &'a Cube<A,N> { | |
| 71 | type Iter = std::slice::Iter<'a, [A; 2]>; | |
| 72 | type Elem = &'a [A; 2]; | |
| 73 | #[inline] | |
| 74 | fn fl_iter(self) -> Self::Iter { | |
| 75 | self.0.iter() | |
| 76 | } | |
| 77 | } | |
| 78 | ||
| 79 | ||
| 80 | /// Iterator for [`Cube`] corners. | |
| 81 | pub struct CubeCornersIter<'a, U : Num, const N : usize> { | |
| 82 | index : usize, | |
| 83 | cube : &'a Cube<U, N>, | |
| 84 | } | |
| 85 | ||
| 86 | impl<'a, U : Num, const N : usize> Iterator for CubeCornersIter<'a, U, N> { | |
| 87 | type Item = Loc<U, N>; | |
| 88 | #[inline] | |
| 89 | fn next(&mut self) -> Option<Self::Item> { | |
| 90 | if self.index >= N { | |
| 91 | None | |
| 92 | } else { | |
| 93 | let i = self.index; | |
| 94 | self.index += 1; | |
| 95 | let arr = self.cube.map_indexed(|k, a, b| if (i>>k)&1 == 0 { a } else { b }); | |
| 96 | Some(arr.into()) | |
| 97 | } | |
| 98 | } | |
| 99 | } | |
| 100 | ||
| 101 | impl<U : Num, const N : usize> Cube<U, N> { | |
| 5 | 102 | /// Maps `f` over the triples $\\{(i, a\_i, b\_i)\\}\_{i=1}^N$ |
| 103 | /// of the cube $∏_{i=1}^N [a_i, b_i)$. | |
| 0 | 104 | #[inline] |
| 105 | pub fn map_indexed<T>(&self, f : impl Fn(usize, U, U) -> T) -> [T; N] { | |
| 106 | map1_indexed(self, |i, &[a, b]| f(i, a, b)) | |
| 107 | } | |
| 108 | ||
| 5 | 109 | /// Maps `f` over the tuples $\\{(a\_i, b\_i)\\}\_{i=1}^N$ |
| 110 | /// of the cube $∏_{i=1}^N [a_i, b_i)$. | |
| 0 | 111 | #[inline] |
| 112 | pub fn map<T>(&self, f : impl Fn(U, U) -> T) -> [T; N] { | |
| 113 | map1(self, |&[a, b]| f(a, b)) | |
| 114 | } | |
| 115 | ||
| 5 | 116 | /// Iterates over the start and end coordinates $\{(a_i, b_i)\}_{i=1}^N$ of the cube along |
| 117 | /// each dimension. | |
| 0 | 118 | #[inline] |
| 119 | pub fn iter_coords(&self) -> std::slice::Iter<'_, [U; 2]> { | |
| 120 | self.0.iter() | |
| 121 | } | |
| 122 | ||
| 5 | 123 | /// Returns the “start” coordinate $a_i$ of the cube $∏_{i=1}^N [a_i, b_i)$. |
| 0 | 124 | #[inline] |
| 125 | pub fn start(&self, i : usize) -> U { | |
| 126 | self.0[i][0] | |
| 127 | } | |
| 128 | ||
| 5 | 129 | /// Returns the end coordinate $a_i$ of the cube $∏_{i=1}^N [a_i, b_i)$. |
| 0 | 130 | #[inline] |
| 131 | pub fn end(&self, i : usize) -> U { | |
| 132 | self.0[i][1] | |
| 133 | } | |
| 5 | 134 | |
| 135 | /// Returns the “start” $(a_1, … ,a_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$ | |
| 136 | /// spanned between $(a_1, … ,a_N)$ and $(b_1, … ,b_N)$. | |
| 0 | 137 | #[inline] |
| 138 | pub fn span_start(&self) -> Loc<U, N> { | |
| 139 | Loc::new(self.map(|a, _b| a)) | |
| 140 | } | |
| 141 | ||
| 5 | 142 | /// Returns the end $(b_1, … ,b_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$ |
| 143 | /// spanned between $(a_1, … ,a_N)$ and $(b_1, … ,b_N)$. | |
| 0 | 144 | #[inline] |
| 145 | pub fn span_end(&self) -> Loc<U, N> { | |
| 146 | Loc::new(self.map(|_a, b| b)) | |
| 147 | } | |
| 148 | ||
| 5 | 149 | /// Iterates over the corners $\{(c_1, … ,c_N) | c_i ∈ \{a_i, b_i\}\}$ of the cube |
| 150 | /// $∏_{i=1}^N [a_i, b_i)$. | |
| 0 | 151 | #[inline] |
| 152 | pub fn iter_corners(&self) -> CubeCornersIter<'_, U, N> { | |
| 153 | CubeCornersIter{ index : 0, cube : self } | |
| 154 | } | |
| 155 | ||
| 5 | 156 | /// Returns the width-`N`-tuple $(b_1-a_1, … ,b_N-a_N)$ of the cube $∏_{i=1}^N [a_i, b_i)$. |
| 0 | 157 | #[inline] |
| 158 | pub fn width(&self) -> Loc<U, N> { | |
| 159 | Loc::new(self.map(|a, b| b-a)) | |
| 160 | } | |
| 161 | ||
| 5 | 162 | /// Translates the cube $∏_{i=1}^N [a_i, b_i)$ by the `shift` $(s_1, … , s_N)$ to |
| 163 | /// $∏_{i=1}^N [a_i+s_i, b_i+s_i)$. | |
| 0 | 164 | #[inline] |
| 165 | pub fn shift(&self, shift : &Loc<U, N>) -> Self { | |
| 166 | let mut cube = self.clone(); | |
| 167 | for i in 0..N { | |
| 168 | cube.0[i][0] += shift[i]; | |
| 169 | cube.0[i][1] += shift[i]; | |
| 170 | } | |
| 171 | cube | |
| 172 | } | |
| 173 | ||
| 5 | 174 | /// Creates a new cube from an array. |
| 0 | 175 | #[inline] |
| 176 | pub fn new(data : [[U; 2]; N]) -> Self { | |
| 177 | Cube(data) | |
| 178 | } | |
| 179 | } | |
| 180 | ||
| 181 | impl<F : Float, const N : usize> Cube<F, N> { | |
| 182 | /// Returns the centre of the cube | |
| 183 | pub fn center(&self) -> Loc<F, N> { | |
| 184 | map1(self, |&[a, b]| (a + b) / F::TWO).into() | |
| 185 | } | |
| 186 | } | |
| 187 | ||
| 188 | impl<U : Num> Cube<U, 1> { | |
| 189 | /// Get the corners of the cube. | |
| 5 | 190 | /// |
| 0 | 191 | /// TODO: generic implementation once const-generics can be involved in |
| 192 | /// calculations. | |
| 193 | #[inline] | |
| 194 | pub fn corners(&self) -> [Loc<U, 1>; 2] { | |
| 195 | let [[a, b]] = self.0; | |
| 196 | [a.into(), b.into()] | |
| 197 | } | |
| 198 | } | |
| 199 | ||
| 200 | impl<U : Num> Cube<U, 2> { | |
| 201 | /// Get the corners of the cube in counter-clockwise order. | |
| 5 | 202 | /// |
| 0 | 203 | /// TODO: generic implementation once const-generics can be involved in |
| 204 | /// calculations. | |
| 205 | #[inline] | |
| 206 | pub fn corners(&self) -> [Loc<U, 2>; 4] { | |
| 207 | let [[a1, b1], [a2, b2]]=self.0; | |
| 208 | [[a1, a2].into(), | |
| 209 | [b1, a2].into(), | |
| 210 | [b1, b2].into(), | |
| 211 | [a1, b2].into()] | |
| 212 | } | |
| 213 | } | |
| 214 | ||
| 215 | impl<U : Num> Cube<U, 3> { | |
| 216 | /// Get the corners of the cube. | |
| 5 | 217 | /// |
| 0 | 218 | /// TODO: generic implementation once const-generics can be involved in |
| 219 | /// calculations. | |
| 220 | #[inline] | |
| 221 | pub fn corners(&self) -> [Loc<U, 3>; 8] { | |
| 222 | let [[a1, b1], [a2, b2], [a3, b3]]=self.0; | |
| 223 | [[a1, a2, a3].into(), | |
| 224 | [b1, a2, a3].into(), | |
| 225 | [b1, b2, a3].into(), | |
| 226 | [a1, b2, a3].into(), | |
| 227 | [a1, b2, b3].into(), | |
| 228 | [b1, b2, b3].into(), | |
| 229 | [b1, a2, b3].into(), | |
| 230 | [a1, a2, b3].into()] | |
| 231 | } | |
| 232 | } | |
| 233 | ||
| 234 | // TODO: Implement Add and Sub of Loc to Cube, and Mul and Div by U : Num. | |
| 235 | ||
| 236 | impl<U : Num, const N : usize> From<[[U; 2]; N]> for Cube<U, N> { | |
| 237 | #[inline] | |
| 238 | fn from(data : [[U; 2]; N]) -> Self { | |
| 239 | Cube(data) | |
| 240 | } | |
| 241 | } | |
| 242 | ||
| 243 | impl<U : Num, const N : usize> From<Cube<U, N>> for [[U; 2]; N] { | |
| 244 | #[inline] | |
| 245 | fn from(Cube(data) : Cube<U, N>) -> Self { | |
| 246 | data | |
| 247 | } | |
| 248 | } | |
| 249 | ||
| 250 | ||
| 251 | impl<U, const N : usize> Cube<U, N> where U : Num + PartialOrd { | |
| 252 | /// Checks whether the cube is non-degenerate, i.e., the start coordinate | |
| 253 | /// of each axis is strictly less than the end coordinate. | |
| 254 | #[inline] | |
| 255 | pub fn nondegenerate(&self) -> bool { | |
| 256 | self.0.iter().all(|range| range[0] < range[1]) | |
| 257 | } | |
| 258 | ||
| 259 | /// Checks whether the cube intersects some `other` cube. | |
| 260 | /// Matching boundary points are not counted, so `U` is ideally a [`Float`]. | |
| 261 | #[inline] | |
| 262 | pub fn intersects(&self, other : &Cube<U, N>) -> bool { | |
| 263 | self.iter_coords().zip(other.iter_coords()).all(|([a1, b1], [a2, b2])| { | |
| 264 | a1 < b2 && a2 < b1 | |
| 265 | }) | |
| 266 | } | |
| 267 | ||
| 268 | /// Checks whether the cube contains some `other` cube. | |
| 269 | pub fn contains_set(&self, other : &Cube<U, N>) -> bool { | |
| 270 | self.iter_coords().zip(other.iter_coords()).all(|([a1, b1], [a2, b2])| { | |
| 271 | a1 <= a2 && b1 >= b2 | |
| 272 | }) | |
| 273 | } | |
| 274 | ||
| 275 | /// Produces the point of minimum $ℓ^p$-norm within the cube `self` for any $p$-norm. | |
| 276 | /// This is the point where each coordinate is closest to zero. | |
| 277 | #[inline] | |
| 278 | pub fn minnorm_point(&self) -> Loc<U, N> { | |
| 279 | let z = U::ZERO; | |
| 280 | // As always, we assume that a ≤ b. | |
| 281 | self.map(|a, b| { | |
| 282 | debug_assert!(a <= b); | |
| 283 | match (a < z, z < b) { | |
| 284 | (false, _) => a, | |
| 285 | (_, false) => b, | |
| 286 | (true, true) => z | |
| 287 | } | |
| 288 | }).into() | |
| 289 | } | |
| 290 | ||
| 291 | /// Produces the point of maximum $ℓ^p$-norm within the cube `self` for any $p$-norm. | |
| 292 | /// This is the point where each coordinate is furthest from zero. | |
| 293 | #[inline] | |
| 294 | pub fn maxnorm_point(&self) -> Loc<U, N> { | |
| 295 | let z = U::ZERO; | |
| 296 | // As always, we assume that a ≤ b. | |
| 297 | self.map(|a, b| { | |
| 298 | debug_assert!(a <= b); | |
| 299 | match (a < z, z < b) { | |
| 300 | (false, _) => b, | |
| 301 | (_, false) => a, | |
| 302 | // A this stage we must have a < 0 (so U must be signed), and want to check | |
| 303 | // whether |a| > |b|. We can do this without assuming U to actually implement | |
| 304 | // `Neg` by comparing whether 0 > a + b. | |
| 305 | (true, true) => if z > a + b { a } else { b } | |
| 306 | } | |
| 307 | }).into() | |
| 308 | } | |
| 309 | } | |
| 310 | ||
| 311 | macro_rules! impl_common { | |
| 312 | ($($t:ty)*, $min:ident, $max:ident) => { $( | |
| 313 | impl<const N : usize> SetOrd for Cube<$t, N> { | |
| 314 | #[inline] | |
| 315 | fn common(&self, other : &Self) -> Self { | |
| 316 | map2(self, other, |&[a1, b1], &[a2, b2]| { | |
| 317 | debug_assert!(a1 <= b1 && a2 <= b2); | |
| 318 | [a1.$min(a2), b1.$max(b2)] | |
| 319 | }).into() | |
| 320 | } | |
| 321 | ||
| 322 | #[inline] | |
| 323 | fn intersect(&self, other : &Self) -> Option<Self> { | |
| 324 | let arr = map2(self, other, |&[a1, b1], &[a2, b2]| { | |
| 325 | debug_assert!(a1 <= b1 && a2 <= b2); | |
| 326 | [a1.$max(a2), b1.$min(b2)] | |
| 327 | }); | |
| 328 | arr.iter().all(|&[a, b]| a >= b).then(|| arr.into()) | |
| 329 | } | |
| 330 | } | |
| 331 | )* } | |
| 332 | } | |
| 333 | ||
| 334 | impl_common!(u8 u16 u32 u64 u128 usize | |
| 335 | i8 i16 i32 i64 i128 isize, min, max); | |
| 336 | // Any NaN yields NaN | |
| 337 | impl_common!(f32 f64, minimum, maximum); | |
| 338 | ||
| 339 | impl<U : Num, const N : usize> std::ops::Index<usize> for Cube<U, N> { | |
| 340 | type Output = [U; 2]; | |
| 341 | #[inline] | |
| 342 | fn index(&self, index: usize) -> &Self::Output { | |
| 343 | &self.0[index] | |
| 344 | } | |
| 345 | } | |
| 346 | ||
| 347 | impl<U : Num, const N : usize> std::ops::IndexMut<usize> for Cube<U, N> { | |
| 348 | #[inline] | |
| 349 | fn index_mut(&mut self, index: usize) -> &mut Self::Output { | |
| 350 | &mut self.0[index] | |
| 351 | } | |
| 352 | } |