Sun, 21 Apr 2024 22:35:03 +0300
added fv_plot
src/ImGenerate.jl | file | annotate | diff | comparison | revisions | |
src/PET/ImGenerate.jl | file | annotate | diff | comparison | revisions | |
src/PET/PET.jl | file | annotate | diff | comparison | revisions | |
src/PET/PlotResults.jl | file | annotate | diff | comparison | revisions | |
src/PredictPDPS.jl | file | annotate | diff | comparison | revisions |
--- a/src/ImGenerate.jl Sun Apr 21 21:00:57 2024 +0300 +++ b/src/ImGenerate.jl Sun Apr 21 22:35:03 2024 +0300 @@ -200,7 +200,7 @@ b_true = zeros(sz...) extract_subimage!(b_true, im, v_cumul; threads=true) b = b_true .+ params.noise_level.*randn(rng,sz...) - v = v_true.*(1.0 .+ zero_factor*params.shake_noise_level.*randn(rng,size(v_true)...)) + v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) # Pass data to iteration routine data = OnlineData{DisplacementConstant}(b_true, b, v, v_true, v_cumul) if !put_unless_closed!(datachannel, data) @@ -257,8 +257,8 @@ # Apply the transformation to the image using warp b_true = copy(warp(im, tform, axes(im), fillvalue=Flat())) - v = v_true.*(1.0 .+ zero_factor*params.shake_noise_level.*randn(rng,size(v_true)...)) - theta = theta_true*(1.0 + zero_factor*params.rotation_noise_level.*randn(rng)) + v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) + theta = theta_true*(1.0 + params.rotation_noise_level.*randn(rng)) # Generate the true and noisy sinograms sinogram_true = zeros(params.radondims...)
--- a/src/PET/ImGenerate.jl Sun Apr 21 21:00:57 2024 +0300 +++ b/src/PET/ImGenerate.jl Sun Apr 21 22:35:03 2024 +0300 @@ -200,7 +200,7 @@ b_true = zeros(sz...) extract_subimage!(b_true, im, v_cumul; threads=true) b = b_true .+ params.noise_level.*randn(rng,sz...) - v = v_true.*(1.0 .+ zero_factor*params.shake_noise_level.*randn(rng,size(v_true)...)) + v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) # Pass data to iteration routine data = OnlineData{DisplacementConstant}(b_true, b, v, v_true, v_cumul) if !put_unless_closed!(datachannel, data) @@ -257,8 +257,8 @@ # Apply the transformation to the image using warp b_true = copy(warp(im, tform, axes(im), fillvalue=Flat())) - v = v_true.*(1.0 .+ zero_factor*params.shake_noise_level.*randn(rng,size(v_true)...)) - theta = theta_true*(1.0 + zero_factor*params.rotation_noise_level.*randn(rng)) + v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) + theta = theta_true*(1.0 + params.rotation_noise_level.*randn(rng)) # Generate the true and noisy sinograms sinogram_true = zeros(params.radondims...)
--- a/src/PET/PET.jl Sun Apr 21 21:00:57 2024 +0300 +++ b/src/PET/PET.jl Sun Apr 21 22:35:03 2024 +0300 @@ -97,8 +97,10 @@ maxiter = 4000, save_results = true, save_images = true, - save_images_iters = Set([100, 200, 300, 500, 800, 1000, - 1300, 1500, 1800, 2000, 4000]), + save_images_iters = Set([100, 300, 500, 800, 1000, + 1300, 1500, 1800, 2000, + 2300, 2500, 2800, 3000, + 3300, 3500, 3800, 4000]), pixelwise_displacement=false, dual_flow = true, prox_predict = true, @@ -127,7 +129,7 @@ sino_sparsity = 0.5, # Percentage of zero parts in the mask L = 300.0, L_experiment = false, - stable_interval = union(Set(1500:2000),Set(3500:4000)), + stable_interval = union(Set(1:1000),Set(2500:3000)), ) const shepplogan = imgen_shepplogan_radon(p_knownâ‚€_pet.sz) @@ -558,9 +560,11 @@ function plot_pet(kwargs...) ssim_plot("shepplogan") + psnr_plot("shepplogan") + fv_plot("shepplogan") ssim_plot("brainphantom") - psnr_plot("shepplogan") psnr_plot("brainphantom") + fv_plot("brainphantom") end
--- a/src/PET/PlotResults.jl Sun Apr 21 21:00:57 2024 +0300 +++ b/src/PET/PlotResults.jl Sun Apr 21 22:35:03 2024 +0300 @@ -160,10 +160,38 @@ push!(identity, trace) end + ##################################################### + zerodual = Vector{GenericTrace{Dict{Symbol, Any}}}() + ##################################################### + directory_path = "./img/" + files = readdir(directory_path) + filtered_files = filter(file -> startswith(file, "$(name)256x256_pdps_known_zerodual") && endswith(file, "0.txt"), files) + + # Define an array of line styles and colors + # line_styles = ["solid", "dash", "dot", "dashdot", "longdash"] + line_colors = ["blue", "red", "green", "orange", "purple", "cyan", "magenta", "yellow", "grey"] + + for (index,file) in enumerate(filtered_files) + filename = directory_path*file + #data = readdlm(filename, '\t', skipstart=1) + data = CSV.File(filename, delim='\t'; header = 2) |> DataFrame + + # Extract the columns you want to plot + X = Int64.(data[mystart:myend,:iter]) + Y = Float64.(data[mystart:myend, :function_value]) + + #line_style = line_styles[i] + line_color = line_colors[index] + + trace = PlotlyJS.scatter(;x=X, y=Y, mode="lines", hovertemplate="%{x:.0f},%{y:.1f}", + line_color=line_color, line_dash="longdash", name="zerod") + push!(identity, trace) + end + layout = Layout(legend_title_text="Function values") # Set legend title if save_plot && !isempty(save_path) - plotlyjs = plot([orig;identity;adhoc;rotation;affine], layout) + plotlyjs = plot([orig;identity;adhoc;rotation;affine;zerodual],layout) open(save_path, "w") do io PlotlyBase.to_html(io, plotlyjs.plot) end @@ -171,7 +199,7 @@ println("Please provide a valid save path.") end - return plot([orig;identity;adhoc;rotation;affine],layout) + return plot([orig;identity;adhoc;rotation;affine;zerodual],layout) end
--- a/src/PredictPDPS.jl Sun Apr 21 21:00:57 2024 +0300 +++ b/src/PredictPDPS.jl Sun Apr 21 22:35:03 2024 +0300 @@ -127,8 +127,8 @@ save_images_iters = Set([1, 2, 3, 5, 10, 25, 30, 50, 100, 250, 300, 500, - 1000, 2500, 3000, 5000, - 10000]), + 1000, 2000, 2500, 3000, 4000, 5000, + 6000, 7000, 7500, 8000, 9000, 10000]), pixelwise_displacement=false, dual_flow = true, prox_predict = true, @@ -136,7 +136,7 @@ init = :zero, plot_movement = false, # stable_interval = Set(), - stable_interval = union(Set(1000:2000),Set(3000:4000),Set(5000:7000),Set(9000:10000)), + stable_interval = union(Set(1:1500),Set(6000:7500)), ) const square = imgen_square((200, 300)) @@ -594,6 +594,7 @@ function plot_denoising(kwargs...) ssim_plot("lighthouse") psnr_plot("lighthouse") + fv_plot("lighthouse") end