Fri, 03 May 2024 13:26:07 -0500
README fix
################## # Our main module ################## __precompile__() module PredictPDPS ######################## # Load external modules ######################## using ImageTools.ImFilter: gaussian using AlgTools.Util ##################### # Load local modules ##################### include("OpticalFlow.jl") include("Radon.jl") include("ImGenerate.jl") include("Run.jl") include("AlgorithmProximal.jl") include("AlgorithmBothMulti.jl") include("AlgorithmFB.jl") include("AlgorithmFBDual.jl") include("AlgorithmNew.jl") include("Stats.jl") #include("PlotResults.jl") include("PET/PET.jl") import .AlgorithmBothMulti, .AlgorithmFB, .AlgorithmFBDual, .AlgorithmProximal, .AlgorithmNew using .ImGenerate using .OpticalFlow using .Stats #using .PlotResults using .PET using .Run ############## # Our exports ############## export run_experiments, batchrun_article, demo_known1, demo_known2, demo_known3, demo_unknown1,demo_unknown2,demo_unknown3, batchrun_denoising, batchrun_predictors, demo_denoising1, demo_denoising2, demo_denoising3, demo_denoising4, demo_denoising5, demo_denoising6, demo_denoising7, #demo_denoising8, demo_petS1, demo_petS2, demo_petS3, demo_petS4, demo_petS5, demo_petS6, demo_petS7, demo_petB1, demo_petB2, demo_petB3, demo_petB4, demo_petB5, demo_petB6, demo_petB7, batchrun_shepplogan, batchrun_brainphantom, batchrun_pet, calculate_statistics #plot_denoising, plot_pet, ################################### # Parameterisation and experiments ################################### const default_save_prefix="img/" const default_params = ( ρ = 0, verbose_iter = 100, maxiter = 10000, save_results = true, save_images = true, save_images_iters = Set([1, 2, 3, 5, 10, 25, 30, 50, 100, 250, 300, 500, 1000, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 7500, 8000, 9000, 10000, 8700]), pixelwise_displacement=false, dual_flow = true, # For AlgorithmProximalfrom 2019 paper handle_interrupt = true, init = :zero, plot_movement = false, stable_interval = Set(0), ) const square = imgen_square((200, 300)) const lighthouse = imgen_shake("lighthouse", (200, 300)) const p_known₀ = default_params ⬿ ( noise_level = 0.5, shake_noise_level = 0.05, shake = 2, α = 0.15, ρ̃₀ = 1, σ̃₀ = 1, δ = 0.9, σ₀ = 1, τ₀ = 0.01, ) # Experiments for 2019 paper const p_unknown₀ = default_params ⬿ ( noise_level = 0.3, shake_noise_level = 0.05, shake = 2, α = 0.2, ρ̃₀ = 1, σ̃₀ = 1, σ₀ = 1, δ = 0.9, λ = 1, θ = (300*200)*100^3, kernel = gaussian((3, 3), (11, 11)), timestep = 0.5, displacement_count = 100, τ₀ = 0.01, ) const experiments_pdps_known = ( Experiment(AlgorithmProximal, DisplacementConstant, lighthouse, p_known₀ ⬿ (phantom_ρ = 0,)), Experiment(AlgorithmProximal, DisplacementConstant, lighthouse, p_known₀ ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmProximal, DisplacementConstant, square, p_known₀ ⬿ (phantom_ρ = 0,)) ) const experiments_pdps_unknown_multi = ( Experiment(AlgorithmBothMulti, DisplacementConstant, lighthouse, p_unknown₀ ⬿ (phantom_ρ = 0,)), Experiment(AlgorithmBothMulti, DisplacementConstant, lighthouse, p_unknown₀ ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmBothMulti, DisplacementConstant, square, p_unknown₀ ⬿ (phantom_ρ = 0,)), ) const experiments_fb_known = ( Experiment(AlgorithmFB, DisplacementConstant, lighthouse, p_known₀ ⬿ (τ̃₀=0.9, fb_inner_iterations = 10)), ) const experiments_all = Iterators.flatten(( experiments_pdps_known, experiments_pdps_unknown_multi, experiments_fb_known )) # Image stabilisation experiments for 2024 paper. PET experiments are in PET/PET.jl const p_known₀_denoising = default_params ⬿ ( noise_level = 0.5, shake_noise_level = 0.025, shake = 2.0, α = 0.25, ρ̃₀ = 1.0, σ̃₀ = 1.0, δ = 0.9, σ₀ = 1.0, τ₀ = 0.01, #stable_interval = Set(0), stable_interval = union(Set(2500:5000),Set(8700:10000)), ) const denoising_experiments_pdps_known = ( Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=DualScaling(x -> (-abs(x-1)^1/5 + 1),0.75,1e-12),)), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=Greedy(),)), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=nothing,),), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=PrimalOnly(),)), Experiment(AlgorithmProximal, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=ZeroDual(),)), ) const denoising_experiments_all = Iterators.flatten(( denoising_experiments_pdps_known, )) ####################### # Demos and batch runs ####################### function demo(experiment; kwargs...) run_experiments(;experiments=(experiment,), save_results=false, save_images=false, save_prefix=default_save_prefix, visualise=true, recalculate=true, verbose_iter=50, fullscreen=true, kwargs...) end demo_known1 = () -> demo(experiments_pdps_known[3]) demo_known2 = () -> demo(experiments_pdps_known[1]) demo_known3 = () -> demo(experiments_pdps_known[2]) demo_unknown1 = () -> demo(experiments_pdps_unknown_multi[3], plot_movement=true) demo_unknown2 = () -> demo(experiments_pdps_unknown_multi[1], plot_movement=true) demo_unknown3 = () -> demo(experiments_pdps_unknown_multi[2], plot_movement=true) demo_denoising1 = () -> demo(denoising_experiments_pdps_known[1]) # Dual scaling demo_denoising2 = () -> demo(denoising_experiments_pdps_known[2]) # Greedy demo_denoising3 = () -> demo(denoising_experiments_pdps_known[3]) # No Prediction demo_denoising4 = () -> demo(denoising_experiments_pdps_known[4]) # Primal Only demo_denoising5 = () -> demo(denoising_experiments_pdps_known[5]) # Proximal (old) demo_denoising6 = () -> demo(denoising_experiments_pdps_known[6]) # Rotation demo_denoising7 = () -> demo(denoising_experiments_pdps_known[7]) # Zero dual function batchrun_article(kwargs...) run_experiments(;experiments=experiments_all, save_prefix=default_save_prefix, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_denoising(;kwargs...) run_experiments(;experiments=denoising_experiments_all, save_prefix=default_save_prefix, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_predictors(;kwargs...) batchrun_denoising(;kwargs...) batchrun_pet(;kwargs...) end ######################### # Plotting SSIM and PSNR ######################### #function plot_denoising(kwargs...) # ssim_plot("lighthouse") # psnr_plot("lighthouse") # fv_plot("lighthouse") #end end # Module