Fri, 03 May 2024 18:03:06 +0300
activation function for dual scscaling
__precompile__() module Stats ######################## # Load external modules ######################## using CSV, DataFrames using Statistics export calculate_statistics, extract_parameters function extract_parameters(filename :: String) # Extracting parameters params_line = readlines(filename)[1] # Split the line by commas and trim each part params_parts = map(strip, split(params_line, ',')) # Initialize variables to store parameter values α_value, τ₀_value, σ₀_value = missing, missing, missing # Look for specific substrings to identify the values of α, τ₀, and σ₀ for param_part in params_parts if contains(param_part, "α = ") α_value = parse(Float64, split(param_part, '=')[2]) elseif contains(param_part, "τ₀ = ") τ₀_value = parse(Float64, split(param_part, '=')[2]) elseif contains(param_part, "σ₀ = ") σ₀_value = parse(Float64, split(param_part, '=')[2]) end end # Assign the values to α, τ₀, and σ₀ α = α_value τ₀ = τ₀_value σ₀ = σ₀_value return α, τ₀, σ₀ end const default_imnames = ("lighthouse200x300", "shepplogan256x256", "brainphantom256x256") const default_algnames = ("dualscaling", "greedy","noprediction","primalonly","proximal","rotation","zerodual","activateddual") function calculate_statistics(;imnames=default_imnames, algnames=default_algnames, csv_path = "./img/summarystats.csv") mystart = 41 # Corresponds to the 500th iterate # Define an array to store results results = DataFrame(experiment = String[], α = Float64[], algorithm = String[], psnr_mean1 = Float64[], psnr_mean500 = Float64[], psnr_ci = String[], ssim_mean1 = Float64[], ssim_mean500 = Float64[], ssim_ci = String[]) for imname in imnames for algname in algnames directory_path = "./img/" files = readdir(directory_path) filtered_files = filter(file -> startswith(file, "$(imname)_pdps_known_$(algname)") && endswith(file, ".txt"), files) for file in filtered_files filename = directory_path * file data = CSV.File(filename, delim='\t', header=2) |> DataFrame # Extract α from filename α, _, _ = extract_parameters(filename) # Extract SSIM and PSNR columns starting from 1st iteration ssim_values1 = Float64.(data[:, :ssim]) psnr_values1 = Float64.(data[:, :psnr]) # Extract SSIM and PSNR columns starting from 500th iteration ssim_values500 = Float64.(data[mystart:end, :ssim]) psnr_values500 = Float64.(data[mystart:end, :psnr]) # Calculate mean and confidence intervals ssim_mean1 = round(mean(ssim_values1), digits=4) psnr_mean1 = round(mean(psnr_values1), digits=4) ssim_mean500 = round(mean(ssim_values500), digits=4) psnr_mean500 = round(mean(psnr_values500), digits=4) ssim_std500 = round(std(ssim_values500), digits=4) psnr_std500 = round(std(psnr_values500), digits=4) n = length(ssim_values500) ssim_ci_lower = round(ssim_mean500 - 1.96 * ssim_std500 / sqrt(n), digits=4) ssim_ci_upper = round(ssim_mean500 + 1.96 * ssim_std500 / sqrt(n), digits=4) psnr_ci_lower = round(psnr_mean500 - 1.96 * psnr_std500 / sqrt(n), digits=4) psnr_ci_upper = round(psnr_mean500 + 1.96 * psnr_std500 / sqrt(n), digits=4) ssim_ci = "$(ssim_ci_lower) - $(ssim_ci_upper)" psnr_ci = "$(psnr_ci_lower) - $(psnr_ci_upper)" experiment = "$(imname)" algorithm = "$(algname)" # Append results to DataFrame push!(results, (experiment, α, algorithm, psnr_mean1, psnr_mean500, psnr_ci, ssim_mean1, ssim_mean500, ssim_ci)) end end end sort!(results, [:experiment, :α, :algorithm]) if isfile(csv_path) rm(csv_path) end CSV.write(csv_path, results) end end