Fri, 03 May 2024 18:03:06 +0300
activation function for dual scscaling
__precompile__() module PET ######################## # Load external modules ######################## using Printf using FileIO #using JLD2 using Setfield using ImageQualityIndexes: assess_psnr, assess_ssim using DelimitedFiles import GR using AlgTools.Util using AlgTools.StructTools using AlgTools.LinkedLists using AlgTools.Comms using ImageTools.Visualise: secs_ns, grayimg, do_visualise using ImageTools.ImFilter: gaussian # For PET using ColorSchemes ##################### # Load local modules #####################a include("AlgorithmNew.jl") include("AlgorithmProximal.jl") #include("PlotResults.jl") import .AlgorithmNew import .AlgorithmProximal using ..Radon: backproject! using ..ImGenerate using ..OpticalFlow using ..Run #using .PlotResults ############## # Our exports ############## export demo_petS1, demo_petS2, demo_petS3, demo_petS4, demo_petS5, demo_petS6, demo_petS7, demo_petB1, demo_petB2, demo_petB3, demo_petB4, demo_petB5, demo_petB6, demo_petB7, batchrun_shepplogan, batchrun_brainphantom, batchrun_pet #plot_pet ################################### # Parameterisation and experiments ################################### const default_save_prefix="img/" const default_params = ( ρ = 0, verbose_iter = 100, maxiter = 4000, save_results = true, save_images = true, save_images_iters = Set([100, 300, 500, 800, 1000, 1300, 1500, 1800, 2000, 2300, 2500, 2800, 3000, 3300, 3500, 3800, 4000]), pixelwise_displacement=false, dual_flow = true, prox_predict = true, handle_interrupt = true, init = :zero, plot_movement = false, stable_interval = Set(0), ) const p_known₀_pet = default_params ⬿ ( noise_level = 0.5, shake_noise_level = 0.25, shake = 1.0, rotation_factor = 0.15, rotation_noise_level = 0.035, α = 0.25, ρ̃₀ = 1.0, σ̃₀ = 1.0, δ = 0.9, σ₀ = 1.0, τ₀ = 0.9, λ = 1, radondims = [128,64], sz = (256,256), scale = 1, c = 1.0, sino_sparsity = 0.5, L = 300.0, L_experiment = false, #stable_interval = Set(0), stable_interval = union(Set(1000:2000),Set(3500:4000)), ) const shepplogan = imgen_shepplogan_radon(p_known₀_pet.sz) const p_known₀_pets = p_known₀_pet ⬿ ( seed = 314159, ) const p_known₀_petb = p_known₀_pet ⬿ ( seed = 9182737465, ) const brainphantom = imgen_brainphantom_radon(p_known₀_pet.sz) const shepplogan_experiments_pdps_known = ( Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=DualScaling(x -> (1/(1 + exp(-1000(x - 0.05)))), 1.0, 1e-12),)), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=Greedy(),)), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=nothing,),), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=PrimalOnly(),)), Experiment(AlgorithmProximal, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=ZeroDual(),)), # Experiment(AlgorithmNew, DisplacementConstant, shepplogan, # p_known₀_pets ⬿ (predictor=ActivatedDual(),)), ) const brainphantom_experiments_pdps_known = ( Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=DualScaling(x -> (-abs(x-1)^1/5 + 1), 0.75, 1e-12),)), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=Greedy(),)), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=nothing,),), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=PrimalOnly(),)), Experiment(AlgorithmProximal, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=ZeroDual(),)), # Experiment(AlgorithmNew, DisplacementConstant, brainphantom, # p_known₀_petb ⬿ (predictor=ActivatedDual(),)), ) const shepplogan_experiments_all = Iterators.flatten(( shepplogan_experiments_pdps_known, )) const brainphantom_experiments_all = Iterators.flatten(( brainphantom_experiments_pdps_known, )) ####################### # Demos and batch runs ####################### function demo(experiment; kwargs...) run_experiments(;experiments=(experiment,), save_prefix=default_save_prefix, visfn=iterate_visualise_pet, datatype=PetOnlineData, save_results=false, save_images=false, visualise=true, recalculate=true, verbose_iter=50, fullscreen=true, kwargs...) end demo_petS1 = () -> demo(shepplogan_experiments_pdps_known[1]) # Dual scaling demo_petS2 = () -> demo(shepplogan_experiments_pdps_known[2]) # Greedy demo_petS3 = () -> demo(shepplogan_experiments_pdps_known[3]) # No Prediction demo_petS4 = () -> demo(shepplogan_experiments_pdps_known[4]) # Primal only demo_petS5 = () -> demo(shepplogan_experiments_pdps_known[5]) # Proximal (old) demo_petS6 = () -> demo(shepplogan_experiments_pdps_known[6]) # Rotation demo_petS7 = () -> demo(shepplogan_experiments_pdps_known[7]) # Zero dual demo_petB1 = () -> demo(brainphantom_experiments_pdps_known[1]) # Dual scaling demo_petB2 = () -> demo(brainphantom_experiments_pdps_known[2]) # Greedy demo_petB3 = () -> demo(brainphantom_experiments_pdps_known[3]) # No Prediction demo_petB4 = () -> demo(brainphantom_experiments_pdps_known[4]) # Primal only demo_petB5 = () -> demo(brainphantom_experiments_pdps_known[5]) # Proximal (old) demo_petB6 = () -> demo(brainphantom_experiments_pdps_known[6]) # Rotation demo_petB7 = () -> demo(brainphantom_experiments_pdps_known[7]) # Zero dual function batchrun_shepplogan(;kwargs...) run_experiments(;experiments=shepplogan_experiments_all, visfn=iterate_visualise_pet, datatype=PetOnlineData, save_prefix=default_save_prefix, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_brainphantom(;kwargs...) run_experiments(;experiments=brainphantom_experiments_all, visfn=iterate_visualise_pet, datatype=PetOnlineData, save_prefix=default_save_prefix, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_pet(;kwargs...) batchrun_shepplogan(;kwargs...) batchrun_brainphantom(;kwargs...) end ###################################################### # Iterator that does visualisation and log collection ###################################################### function rescale(arr, new_range) old_min = minimum(arr) old_max = maximum(arr) scale_factor = (new_range[2] - new_range[1]) / (old_max - old_min) scaled_arr = new_range[1] .+ (arr .- old_min) * scale_factor return scaled_arr end function iterate_visualise_pet(datachannel::Channel{PetOnlineData{DisplacementT}}, st :: State, step :: Function, params :: NamedTuple) where DisplacementT try sc = nothing d = take!(datachannel) for iter=1:params.maxiter dnext = take!(datachannel) st = step(d.sinogram_noisy, d.v, d.theta, d.b_true, d.S) do calc_objective stn = st if isnothing(stn.start_time) # The Julia precompiler is a miserable joke, apparently not crossing module # boundaries, so only start timing after the first iteration. stn = @set stn.start_time=secs_ns() end verb = params.verbose_iter!=0 && mod(iter, params.verbose_iter) == 0 # Normalise movement to image dimensions so # our TikZ plotting code doesn't need to know # the image pixel size. sc = 1.0./maximum(size(d.b_true)) if verb || iter ≤ 20 || (iter ≤ 200 && mod(iter, 10) == 0) verb_start = secs_ns() tm = verb_start - stn.start_time - stn.wasted_time value, x, v, vhist = calc_objective() entry = LogEntry(iter, tm, value, #sc*d.v_cumul_true[1], #sc*d.v_cumul_true[2], #sc*v[1], sc*v[2], assess_psnr(x, d.b_true), assess_ssim(x, d.b_true), #assess_psnr(d.b_noisy, d.b_true), #assess_ssim(d.b_noisy, d.b_true) ) # (**) Collect a singly-linked list of log to avoid array resizing # while iterating stn = @set stn.log=LinkedListEntry(entry, stn.log) if !isnothing(vhist) vhist=vhist.*sc end if verb @printf("%d/%d J=%f, PSNR=%f, SSIM=%f, avg. FPS=%f\n", iter, params.maxiter, value, entry.psnr, entry.ssim, entry.iter/entry.time) if isa(stn.vis, Channel) put_onlylatest!(stn.vis, ((rescale(backproject!(d.b_true,d.sinogram_noisy),(0.0,params.dynrange)), x), params.plot_movement, stn.log, vhist)) end end if params.save_images && (!haskey(params, :save_images_iters) || iter ∈ params.save_images_iters) fn = (t, ext) -> "$(params.save_prefix)_$(t)_frame$(iter).$(ext)" normalise = (data) -> data./maximum(data) # save(File(format"PNG", fn("true", "png")), mapped_img(d.b_true, ColorSchemes.cmyk.colors[1:end])) # save(File(format"PNG", fn("true_sinogram", "png")), mapped_img(normalise(d.sinogram_true), ColorSchemes.cmyk.colors[1:end])) # save(File(format"PNG", fn("data_sinogram", "png")), mapped_img(normalise(d.S.*d.sinogram_noisy), ColorSchemes.cmyk.colors[1:end])) save(File(format"PNG", fn("reco", "png")), mapped_img(x, ColorSchemes.cmyk.colors[1:end])) if !isnothing(vhist) open(fn("movement", "txt"), "w") do io writedlm(io, ["est_y" "est_x"]) writedlm(io, vhist) end end end stn = @set stn.wasted_time += (secs_ns() - verb_start) return stn end hifientry = LogEntryHiFi(iter, sc*d.v_cumul_true[1], sc*d.v_cumul_true[2]) st = @set st.log_hifi=LinkedListEntry(hifientry, st.log_hifi) return st end d=dnext end catch ex if params.handle_interrupt && isa(ex, InterruptException) # If SIGINT is received (user pressed ^C), terminate computations, # returning current status. Effectively, we do not call `step()` again, # ending the iterations, but letting the algorithm finish up. # Assuming (**) above occurs atomically, `st.log` should be valid, but # any results returned by the algorithm itself may be partial, as for # reasons of efficiency we do *not* store results of an iteration until # the next iteration is finished. printstyled("\rUser interrupt—finishing up.\n", bold=true, color=202) st = @set st.aborted = true else rethrow(ex) end end return st end # Clip image values to allowed range clip = x -> min(max(x, 0.0), 1.0) # Apply a colourmap (vector of RGB objects) to raw image data function mapped_img(im, cmap) l = length(cmap) apply = t -> cmap[1+round(UInt16, clip(t) * (l-1))] return apply.(im) end ######################### # Plotting SSIM and PSNR ######################### #function plot_pet(kwargs...) # ssim_plot("shepplogan") # psnr_plot("shepplogan") # fv_plot("shepplogan") # ssim_plot("brainphantom") # psnr_plot("brainphantom") # fv_plot("brainphantom") #end end # Module