Sat, 04 Dec 2021 09:22:46 +0200
Update packages and manifest to Julia 1.7.
ImageQualityIndices had change `psnr` and `ssim` to have `assess_`-prefix.
Problems with GR fullscreen window size now.
###################################################################### # Predictive online PDPS for optical flow with unknown velocity field ###################################################################### __precompile__() module AlgorithmBothCumul identifier = "pdps_unknown_cumul" using Printf using AlgTools.Util import AlgTools.Iterate using ImageTools.Gradient using ImageTools.ImFilter using ..OpticalFlow: Image, ImageSize, DisplacementConstant, pdflow!, horn_schunck_reg_prox!, pointwise_gradiprod_2d! using ..AlgorithmBothGreedyV: init_iterates using ..Algorithm: step_lengths ############ # Algorithm ############ function solve( :: Type{DisplacementT}; dim :: ImageSize, iterate = AlgTools.simple_iterate, params::NamedTuple) where DisplacementT ###################### # Initialise iterates ###################### x, y, Δx, Δy, x̄, u = init_iterates(DisplacementT, dim) init_data = (params.init == :data) # … for tracking cumulative movement if DisplacementT == DisplacementConstant ucumul = zeros(size(u)...) end ############################################# # Extract parameters and set up step lengths ############################################# α, ρ, λ, θ, T = params.α, params.ρ, params.λ, params.θ, params.timestep R_K² = ∇₂_norm₂₂_est² γ = 1 τ, σ, σ̃, ρ̃ = step_lengths(params, γ, R_K²) kernel = params.kernel #################### # Run the algorithm #################### b₀=nothing b₀_filt=nothing u_prev=zeros(size(u)) v = iterate(params) do verbose :: Function, b :: Image, 🚫unused_v_known :: DisplacementT, 🚫unused_b_next :: Image ######################################################### # Smoothen data for Horn–Schunck term; zero initial data ######################################################### b_filt = (kernel==nothing ? b : simple_imfilter(b, kernel)) if b₀ == nothing b₀ = b b₀_filt = b_filt end ################################################ # Prediction step # We leave u as-is in this cumulative version ################################################ if init_data x .= b init_data = false end pdflow!(x, Δx, y, Δy, u-u_prev, params.dual_flow) if params.prox_predict ∇₂!(Δy, x) @. y = (y + σ̃*Δy)/(1 + σ̃*(ρ̃+ρ/α)) proj_norm₂₁ball!(y, α) end # Store current cumulative displacement before updating in next step. u_prev .= u ############ # PDPS step ############ ∇₂ᵀ!(Δx, y) # primal step: @. x̄ = x # | save old x for over-relax @. x = (x-τ*(Δx-b))/(1+τ) # | prox horn_schunck_reg_prox!(u, b_filt, b₀_filt, τ, θ, λ, T) @. x̄ = 2x - x̄ # over-relax ∇₂!(Δy, x̄) # dual step: y @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | proj_norm₂₁ball!(y, α) # | prox ######################################################## # Give function value and cumulative movement if needed ######################################################## v = verbose() do ∇₂!(Δy, x) tmp = zeros(size(b_filt)) pointwise_gradiprod_2d!(tmp, Δy, u, b₀_filt) value = (norm₂²(b-x)/2 + θ*norm₂²((b_filt-b₀_filt)./T+tmp) + λ*norm₂²(u)/2 + α*γnorm₂₁(Δy, ρ)) value, x, u, nothing end return v end return x, y, v end end # Module