Sun, 21 Apr 2024 19:26:50 +0300
added stable interval for denoising
#################################################################### # Predictive online PDPS for optical flow with known velocity field #################################################################### __precompile__() module AlgorithmFBDual using Printf using AlgTools.Util import AlgTools.Iterate using ImageTools.Gradient using ..OpticalFlow: Image, ImageSize, flow! ######################### # Iterate initialisation ######################### function init_rest(x::Image) imdim=size(x) y = zeros(2, imdim...) Δx = copy(x) Δy = copy(y) return x, y, Δx, Δy end function init_iterates(xinit::Image) return init_rest(copy(xinit)) end function init_iterates(dim::ImageSize) return init_rest(zeros(dim...)) end ############ # Algorithm ############ function solve( :: Type{DisplacementT}; dim :: ImageSize, iterate = AlgTools.simple_iterate, params::NamedTuple) where DisplacementT ################################ # Extract and set up parameters ################################ α, ρ = params.α, params.ρ τ₀, τ̃₀ = params.τ₀, params.τ̃₀ R_K² = ∇₂_norm₂₂_est² τ = τ₀/R_K² ###################### # Initialise iterates ###################### x, y, Δx, Δy = init_iterates(dim) #################### # Run the algorithm #################### v = iterate(params) do verbose :: Function, b :: Image, v_known :: DisplacementT, 🚫unused_b_next :: Image ################## # Prediction step ################## # Δx is a temporary storage variable of correct dimensions flow!(@view(y[1,:, :]), Δx, v_known) flow!(@view(y[2,:, :]), Δx, v_known) ∇₂ᵀ!(Δx, y) @. x = b - Δx ∇₂!(Δy, x) @. y = (y - τ*Δy)/(1 + τ*ρ/α) proj_norm₂₁ball!(y, α) ################################ # Give function value if needed ################################ v = verbose() do ∇₂ᵀ!(Δx, y) @. x = b - Δx ∇₂!(Δy, x) value = norm₂²(b-x)/2 + α*γnorm₂₁(Δy, ρ) value, x, [NaN, NaN], nothing end v end @warn "Using old x value. Better approach unimplemented as this algorithm is not good." # ∇₂ᵀ!(Δx, y) # @. x = b - Δx return x, y, v end end # Module