src/PET/Radon.jl

Sun, 21 Apr 2024 13:43:18 +0300

author
Neil Dizon <neil.dizon@helsinki.fi>
date
Sun, 21 Apr 2024 13:43:18 +0300
changeset 16
98b79c837a30
parent 8
e4ad8f7ce671
permissions
-rw-r--r--

added zero dual in PET

# From https://github.com/LMescheder/Radon.jl/blob/master/src/Radon.jl
# Updated to modern Julia. Fixed radon! to zero out `radonim`.

__precompile__()


module Radon
export radon!, backproject!
# package code goes here

function radon(im::AbstractArray{T, 2}) where T<:AbstractFloat
    Nx, Ny = size(im)
    radonim = similar(im, min(Nx, Ny), max(Nx, Ny))
    radon!(radonim, im)
    radonim
end

function radon!(radonim::AbstractArray{T, 2}, im::AbstractArray{T, 2}) where T<:AbstractFloat
    Nφ, Ns = size(radonim)
    Nx, Ny = size(im)
    Ldiag = hypot(Nx, Ny)
    K = round(Int, Ldiag)

    dLz = Ldiag/(K-1)
    dLs = Ldiag/(Ns-1)
    dφ = π/Nφ

    @inbounds for is = 1:Ns, iφ = 1:Nφ
        φ = (iφ-1)*dφ
        s = -Ldiag/2 + (is-1)*dLs
        tx = cos(φ)
        ty = sin(φ)

        radonim[iφ, is] = zero(T)
        for k=1:K
            z = -Ldiag/2 + (k-1)*dLz
            x = round(Int, Nx/2 + z*ty + s*tx)
            y = round(Int, Ny/2 - z*tx + s*ty)

            if 1 <= x <= Nx && 1 <= y <= Ny
                radonim[iφ, is] += im[x, y]*dLz
            end
        end
    end
    radonim
end

function backproject(radonim::AbstractArray{T, 2}) where T<:AbstractFloat
    Nφ, Ns = size(radonim)
    im = similar(radonim, Ns, Ns)
    backproject!(im, radonim)
    im
end

function backproject!(im::AbstractArray{T, 2}, radonim::AbstractArray{T, 2}) where T<:AbstractFloat
    Nφ, Ns = size(radonim)
    Nx, Ny = size(im)
    Ldiag = hypot(Nx, Ny)
    K = round(Int, Ldiag)

    dLz = Ldiag/(K-1)
    dLs = Ldiag/(Ns-1)
    dφ = π/Nφ

    im .= 0.
    @inbounds for is = 1:Ns, iφ = 1:Nφ
        φ = (iφ-1)*dφ
        s = -Ldiag/2 + (is-1)*dLs
        tx = cos(φ)
        ty = sin(φ)

        for k=1:K
            z = -Ldiag/2 + (k-1)*dLz
            x = round(Int, Nx/2 + z*ty + s*tx)
            y = round(Int, Ny/2 - z*tx + s*ty)

            if 1 <= x <= Nx && 1 <= y <= Ny
                im[x, y] += radonim[iφ, is]*dLz
            end
        end
    end
    im
end

end # module

mercurial