Thu, 25 Apr 2024 11:14:41 -0500
DualScaling parametrisation
__precompile__() module PET ######################## # Load external modules ######################## using Printf using FileIO #using JLD2 using Setfield using ImageQualityIndexes: assess_psnr, assess_ssim using DelimitedFiles import GR using AlgTools.Util using AlgTools.StructTools using AlgTools.LinkedLists using AlgTools.Comms using ImageTools.Visualise: secs_ns, grayimg, do_visualise using ImageTools.ImFilter: gaussian # For PET using ColorSchemes ##################### # Load local modules ##################### include("OpticalFlow.jl") include("Radon.jl") include("ImGenerate.jl") include("AlgorithmDualScaling.jl") include("AlgorithmGreedy.jl") include("AlgorithmNoPrediction.jl") include("AlgorithmPrimalOnly.jl") include("AlgorithmProximal.jl") include("AlgorithmRotation.jl") include("AlgorithmZeroDual.jl") #include("PlotResults.jl") import .AlgorithmDualScaling import .AlgorithmGreedy import .AlgorithmNoPrediction import .AlgorithmPrimalOnly import .AlgorithmProximal import .AlgorithmRotation import .AlgorithmZeroDual using .Radon: backproject! using .ImGenerate using .OpticalFlow: DisplacementFull, DisplacementConstant #using .PlotResults ############## # Our exports ############## export demo_petS1, demo_petS2, demo_petS3, demo_petS4, demo_petS5, demo_petS6, demo_petS7, demo_petB1, demo_petB2, demo_petB3, demo_petB4, demo_petB5, demo_petB6, demo_petB7, batchrun_shepplogan, batchrun_brainphantom, batchrun_pet #plot_pet ################################### # Parameterisation and experiments ################################### struct Experiment mod :: Module DisplacementT :: Type imgen :: ImGen params :: NamedTuple end function Base.show(io::IO, e::Experiment) displacementname(::Type{DisplacementFull}) = "DisplacementFull" displacementname(::Type{DisplacementConstant}) = "DisplacementConstant" print(io, " mod: $(e.mod) DisplacementT: $(displacementname(e.DisplacementT)) imgen: $(e.imgen.name) $(e.imgen.dim[1])×$(e.imgen.dim[2]) params: $(e.params ⬿ (kernel = "(not shown)",)) ") end const default_save_prefix="img/" const default_params = ( ρ = 0, verbose_iter = 100, maxiter = 4000, save_results = true, save_images = true, save_images_iters = Set([100, 300, 500, 800, 1000, 1300, 1500, 1800, 2000, 2300, 2500, 2800, 3000, 3300, 3500, 3800, 4000]), pixelwise_displacement=false, dual_flow = true, prox_predict = true, handle_interrupt = true, init = :zero, plot_movement = false, stable_interval = Set(0), ) const p_known₀_pet = ( noise_level = 0.5, shake_noise_level = 0.1, shake = 1.0, rotation_factor = 0.075, rotation_noise_level = 0.0075, α = 0.15, ρ̃₀ = 1.0, σ̃₀ = 1.0, δ = 0.9, σ₀ = 1.0, τ₀ = 0.9, λ = 1, radondims = [128,64], sz = (256,256), scale = 1, c = 1.0, sino_sparsity = 0.5, L = 300.0, L_experiment = false, #stable_interval = Set(0), stable_interval = union(Set(1000:2000),Set(3500:4000)), ) const shepplogan = imgen_shepplogan_radon(p_known₀_pet.sz) const brainphantom = imgen_brainphantom_radon(p_known₀_pet.sz) const shepplogan_experiments_pdps_known = ( Experiment(AlgorithmDualScaling, DisplacementConstant, shepplogan, p_known₀_pet), Experiment(AlgorithmGreedy, DisplacementConstant, shepplogan, p_known₀_pet), Experiment(AlgorithmNoPrediction, DisplacementConstant, shepplogan, p_known₀_pet), Experiment(AlgorithmPrimalOnly, DisplacementConstant, shepplogan, p_known₀_pet), Experiment(AlgorithmProximal, DisplacementConstant, shepplogan, p_known₀_pet ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmRotation, DisplacementConstant, shepplogan, p_known₀_pet), Experiment(AlgorithmZeroDual, DisplacementConstant, shepplogan, p_known₀_pet), ) const brainphantom_experiments_pdps_known = ( Experiment(AlgorithmDualScaling, DisplacementConstant, brainphantom, p_known₀_pet), Experiment(AlgorithmGreedy, DisplacementConstant, brainphantom, p_known₀_pet), Experiment(AlgorithmNoPrediction, DisplacementConstant, brainphantom, p_known₀_pet), Experiment(AlgorithmPrimalOnly, DisplacementConstant, brainphantom, p_known₀_pet), Experiment(AlgorithmProximal, DisplacementConstant, brainphantom, p_known₀_pet ⬿ (phantom_ρ = 100,)), Experiment(AlgorithmRotation, DisplacementConstant, brainphantom, p_known₀_pet), Experiment(AlgorithmZeroDual, DisplacementConstant, brainphantom, p_known₀_pet), ) const shepplogan_experiments_all = Iterators.flatten(( shepplogan_experiments_pdps_known, )) const brainphantom_experiments_all = Iterators.flatten(( brainphantom_experiments_pdps_known, )) ################ # Log ################ struct LogEntry <: IterableStruct iter :: Int time :: Float64 function_value :: Float64 #v_cumul_true_y :: Float64 #v_cumul_true_x :: Float64 #v_cumul_est_y :: Float64 #v_cumul_est_x :: Float64 psnr :: Float64 ssim :: Float64 #psnr_data :: Float64 #ssim_data :: Float64 end struct LogEntryHiFi <: IterableStruct iter :: Int v_cumul_true_y :: Float64 v_cumul_true_x :: Float64 end ############### # Main routine ############### struct State vis :: Union{Channel,Bool,Nothing} start_time :: Union{Real,Nothing} wasted_time :: Real log :: LinkedList{LogEntry} log_hifi :: LinkedList{LogEntryHiFi} aborted :: Bool end function name(e::Experiment, p) ig = e.imgen # return "$(ig.name)_$(e.mod.identifier)_$(@sprintf "%x" hash(p))" return "$(ig.name)_$(e.mod.identifier)_$(Int64(100*p.α))_$(Int64(10000*p.σ₀))_$(Int64(10000*p.τ₀))" end function write_tex(texfile, e_params) open(texfile, "w") do io wp = (n, v) -> println(io, "\\def\\EXPPARAM$(n){$(v)}") wf = (n, s) -> if isdefined(e_params, s) wp(n, getfield(e_params, s)) end wf("alpha", :α) wf("sigmazero", :σ₀) wf("tauzero", :τ₀) wf("tildetauzero", :τ̃₀) wf("delta", :δ) wf("lambda", :λ) wf("theta", :θ) wf("maxiter", :maxiter) wf("noiselevel", :noise_level) wf("shakenoiselevel", :shake_noise_level) wf("shake", :shake) wf("timestep", :timestep) wf("displacementcount", :displacementcount) wf("phantomrho", :phantom_ρ) if isdefined(e_params, :σ₀) wp("sigma", (e_params.σ₀ == 1 ? "" : "$(e_params.σ₀)") * "\\sigma_{\\max}") end end end function run_experiments(;visualise=true, recalculate=true, experiments, save_prefix=default_save_prefix, fullscreen=false, kwargs...) # Create visualisation if visualise rc = Channel(1) visproc = Threads.@spawn bg_visualise_enhanced(rc, fullscreen=fullscreen) bind(rc, visproc) vis = rc else vis = false end # Run all experiments for e ∈ experiments # Parameters for this experiment e_params = default_params ⬿ e.params ⬿ kwargs ename = name(e, e_params) e_params = e_params ⬿ (save_prefix = save_prefix * ename, dynrange = e.imgen.dynrange, Λ = e.imgen.Λ) if recalculate || !isfile(e_params.save_prefix * ".txt") println("Running experiment \"$(ename)\"") # Start data generation task datachannel = Channel{PetOnlineData{e.DisplacementT}}(2) gentask = Threads.@spawn e.imgen.f(e.DisplacementT, datachannel, e_params) bind(datachannel, gentask) # Run algorithm iterate = curry(iterate_visualise, datachannel, State(vis, nothing, 0.0, nothing, nothing, false)) x, y, st = e.mod.solve(e.DisplacementT; dim=e.imgen.dim, iterate=iterate, params=e_params) # Clear non-saveable things st = @set st.vis = nothing println("Wasted_time: $(st.wasted_time)s") if e_params.save_results println("Saving " * e_params.save_prefix * "(.txt,_hifi.txt,_params.tex)") perffile = e_params.save_prefix * ".txt" hififile = e_params.save_prefix * "_hifi.txt" texfile = e_params.save_prefix * "_params.tex" # datafile = e_params.save_prefix * ".jld2" write_log(perffile, st.log, "# params = $(e_params)\n") #write_log(hififile, st.log_hifi, "# params = $(e_params)\n") #write_tex(texfile, e_params) # @save datafile x y st params end close(datachannel) wait(gentask) if st.aborted break end else println("Skipping already computed experiment \"$(ename)\"") # texfile = e_params.save_prefix * "_params.tex" # write_tex(texfile, e_params) end end if visualise # Tell subprocess to finish, and wait put!(rc, nothing) close(rc) wait(visproc) end return end ####################### # Demos and batch runs ####################### function demo(experiment; kwargs...) run_experiments(;experiments=(experiment,), save_results=false, save_images=false, visualise=true, recalculate=true, verbose_iter=50, fullscreen=true, kwargs...) end demo_petS1 = () -> demo(shepplogan_experiments_pdps_known[1]) # Dual scaling demo_petS2 = () -> demo(shepplogan_experiments_pdps_known[2]) # Greedy demo_petS3 = () -> demo(shepplogan_experiments_pdps_known[3]) # No Prediction demo_petS4 = () -> demo(shepplogan_experiments_pdps_known[4]) # Primal only demo_petS5 = () -> demo(shepplogan_experiments_pdps_known[5]) # Proximal (old) demo_petS6 = () -> demo(shepplogan_experiments_pdps_known[6]) # Rotation demo_petS7 = () -> demo(shepplogan_experiments_pdps_known[7]) # Zero dual demo_petB1 = () -> demo(brainphantom_experiments_pdps_known[1]) # Dual scaling demo_petB2 = () -> demo(brainphantom_experiments_pdps_known[2]) # Greedy demo_petB3 = () -> demo(brainphantom_experiments_pdps_known[3]) # No Prediction demo_petB4 = () -> demo(brainphantom_experiments_pdps_known[4]) # Primal only demo_petB5 = () -> demo(brainphantom_experiments_pdps_known[5]) # Proximal (old) demo_petB6 = () -> demo(brainphantom_experiments_pdps_known[6]) # Rotation demo_petB7 = () -> demo(brainphantom_experiments_pdps_known[7]) # Zero dual function batchrun_shepplogan(;kwargs...) run_experiments(;experiments=shepplogan_experiments_all, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_brainphantom(;kwargs...) run_experiments(;experiments=brainphantom_experiments_all, save_results=true, save_images=true, visualise=false, recalculate=false, kwargs...) end function batchrun_pet(;kwargs...) batchrun_shepplogan(;kwargs...) batchrun_brainphantom(;kwargs...) end ###################################################### # Iterator that does visualisation and log collection ###################################################### function rescale(arr, new_range) old_min = minimum(arr) old_max = maximum(arr) scale_factor = (new_range[2] - new_range[1]) / (old_max - old_min) scaled_arr = new_range[1] .+ (arr .- old_min) * scale_factor return scaled_arr end function iterate_visualise(datachannel::Channel{PetOnlineData{DisplacementT}}, st :: State, step :: Function, params :: NamedTuple) where DisplacementT try sc = nothing d = take!(datachannel) for iter=1:params.maxiter dnext = take!(datachannel) st = step(d.sinogram_noisy, d.v, d.theta, d.b_true, d.S) do calc_objective stn = st if isnothing(stn.start_time) # The Julia precompiler is a miserable joke, apparently not crossing module # boundaries, so only start timing after the first iteration. stn = @set stn.start_time=secs_ns() end verb = params.verbose_iter!=0 && mod(iter, params.verbose_iter) == 0 # Normalise movement to image dimensions so # our TikZ plotting code doesn't need to know # the image pixel size. sc = 1.0./maximum(size(d.b_true)) if verb || iter ≤ 20 || (iter ≤ 200 && mod(iter, 10) == 0) verb_start = secs_ns() tm = verb_start - stn.start_time - stn.wasted_time value, x, v, vhist = calc_objective() entry = LogEntry(iter, tm, value, #sc*d.v_cumul_true[1], #sc*d.v_cumul_true[2], #sc*v[1], sc*v[2], assess_psnr(x, d.b_true), assess_ssim(x, d.b_true), #assess_psnr(d.b_noisy, d.b_true), #assess_ssim(d.b_noisy, d.b_true) ) # (**) Collect a singly-linked list of log to avoid array resizing # while iterating stn = @set stn.log=LinkedListEntry(entry, stn.log) if !isnothing(vhist) vhist=vhist.*sc end if verb @printf("%d/%d J=%f, PSNR=%f, SSIM=%f, avg. FPS=%f\n", iter, params.maxiter, value, entry.psnr, entry.ssim, entry.iter/entry.time) if isa(stn.vis, Channel) put_onlylatest!(stn.vis, ((rescale(backproject!(d.b_true,d.sinogram_noisy),(0.0,params.dynrange)), x), params.plot_movement, stn.log, vhist)) end end if params.save_images && (!haskey(params, :save_images_iters) || iter ∈ params.save_images_iters) fn = (t, ext) -> "$(params.save_prefix)_$(t)_frame$(iter).$(ext)" normalise = (data) -> data./maximum(data) # save(File(format"PNG", fn("true", "png")), mapped_img(d.b_true, ColorSchemes.cmyk.colors[1:end])) # save(File(format"PNG", fn("true_sinogram", "png")), mapped_img(normalise(d.sinogram_true), ColorSchemes.cmyk.colors[1:end])) # save(File(format"PNG", fn("data_sinogram", "png")), mapped_img(normalise(d.S.*d.sinogram_noisy), ColorSchemes.cmyk.colors[1:end])) save(File(format"PNG", fn("reco", "png")), mapped_img(x, ColorSchemes.cmyk.colors[1:end])) if !isnothing(vhist) open(fn("movement", "txt"), "w") do io writedlm(io, ["est_y" "est_x"]) writedlm(io, vhist) end end end stn = @set stn.wasted_time += (secs_ns() - verb_start) return stn end hifientry = LogEntryHiFi(iter, sc*d.v_cumul_true[1], sc*d.v_cumul_true[2]) st = @set st.log_hifi=LinkedListEntry(hifientry, st.log_hifi) return st end d=dnext end catch ex if params.handle_interrupt && isa(ex, InterruptException) # If SIGINT is received (user pressed ^C), terminate computations, # returning current status. Effectively, we do not call `step()` again, # ending the iterations, but letting the algorithm finish up. # Assuming (**) above occurs atomically, `st.log` should be valid, but # any results returned by the algorithm itself may be partial, as for # reasons of efficiency we do *not* store results of an iteration until # the next iteration is finished. printstyled("\rUser interrupt—finishing up.\n", bold=true, color=202) st = @set st.aborted = true else rethrow(ex) end end return st end function bg_visualise_enhanced(rc; fullscreen=false) process_channel(rc) do d imgs, plot_movement, log, vhist = d do_visualise(imgs, refresh=false, fullscreen=fullscreen) # Overlay movement GR.settextcolorind(5) GR.setcharheight(0.015) GR.settextpath(GR.TEXT_PATH_RIGHT) tx, ty = GR.wctondc(0, 1) GR.text(tx, ty, @sprintf "FPS %.1f, SSIM %.2f, PSNR %.1f" (log.value.iter/log.value.time) log.value.ssim log.value.psnr) if plot_movement sc=1.0 p=unfold_linked_list(log) x=map(e -> 1.5+sc*e.v_cumul_true_x, p) y=map(e -> 0.5+sc*e.v_cumul_true_y, p) GR.setlinewidth(2) GR.setlinecolorind(2) GR.polyline(x, y) x=map(e -> 1.5+sc*e.v_cumul_est_x, p) y=map(e -> 0.5+sc*e.v_cumul_est_y, p) GR.setlinecolorind(3) GR.polyline(x, y) if vhist != nothing GR.setlinecolorind(4) x=map(v -> 1.5+sc*v, vhist[:,2]) y=map(v -> 0.5+sc*v, vhist[:,1]) GR.polyline(x, y) end end GR.updatews() end end # Clip image values to allowed range clip = x -> min(max(x, 0.0), 1.0) # Apply a colourmap (vector of RGB objects) to raw image data function mapped_img(im, cmap) l = length(cmap) apply = t -> cmap[1+round(UInt16, clip(t) * (l-1))] return apply.(im) end ######################### # Plotting SSIM and PSNR ######################### #function plot_pet(kwargs...) # ssim_plot("shepplogan") # psnr_plot("shepplogan") # fv_plot("shepplogan") # ssim_plot("brainphantom") # psnr_plot("brainphantom") # fv_plot("brainphantom") #end ############### # Precompiling ############### # precompile(Tuple{typeof(GR.drawimage), Float64, Float64, Float64, Float64, Int64, Int64, Array{UInt32, 2}}) # precompile(Tuple{Type{Plots.Plot{T} where T<:RecipesBase.AbstractBackend}, Plots.GRBackend, Int64, Base.Dict{Symbol, Any}, Base.Dict{Symbol, Any}, Array{Plots.Series, 1}, Nothing, Array{Plots.Subplot{T} where T<:RecipesBase.AbstractBackend, 1}, Base.Dict{Any, Plots.Subplot{T} where T<:RecipesBase.AbstractBackend}, Plots.EmptyLayout, Array{Plots.Subplot{T} where T<:RecipesBase.AbstractBackend, 1}, Bool}) # precompile(Tuple{typeof(Plots._plot!), Plots.Plot{Plots.GRBackend}, Base.Dict{Symbol, Any}, Tuple{Array{ColorTypes.Gray{Float64}, 2}}}) end # Module