--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/PET/OpticalFlow.jl Fri Apr 19 17:00:37 2024 +0300 @@ -0,0 +1,431 @@ +################################ +# Code relevant to optical flow +################################ + +__precompile__() + +module OpticalFlow + +using AlgTools.Util +using ImageTools.Gradient +import ImageTools.Translate +using ImageTools.ImFilter + +# using ImageTransformations +# using Images, CoordinateTransformations, Rotations, OffsetArrays +# using Interpolations + +import Images: center, warp +import CoordinateTransformations: recenter +import Rotations: RotMatrix +import Interpolations: Flat + +########## +# Exports +########## + +export flow!, + pdflow!, + flow_grad!, + flow_interp!, + estimate_Λ², + estimate_linear_Λ², + pointwise_gradiprod_2d!, + pointwise_gradiprod_2dᵀ!, + horn_schunck_reg_prox!, + horn_schunck_reg_prox_op!, + mldivide_step_plus_sym2x2!, + linearised_optical_flow_error, + Image, AbstractImage, ImageSize, + Gradient, Displacement, + DisplacementFull, DisplacementConstant, + HornSchunckData, + filter_hs, + petpdflow! + +############################################### +# Types (several imported from ImageTools.Translate) +############################################### + +Image = Translate.Image +AbstractImage = AbstractArray{Float64,2} +Displacement = Translate.Displacement +DisplacementFull = Translate.DisplacementFull +DisplacementConstant = Translate.DisplacementConstant +Gradient = Array{Float64,3} +ImageSize = Tuple{Int64,Int64} + +################################# +# Displacement field based flow +################################# + +function flow_interp!(x::AbstractImage, u::Displacement, tmp::AbstractImage; + threads = false) + tmp .= x + Translate.translate_image!(x, tmp, u; threads=threads) +end + +function flow_interp!(x::AbstractImage, u::Displacement; + threads = false) + tmp = copy(x) + Translate.translate_image!(x, tmp, u; threads=threads) +end + +flow! = flow_interp! + +function pdflow!(x, Δx, y, Δy, u, dual_flow; threads=:none) + if dual_flow + #flow!((x, @view(y[1, :, :]), @view(y[2, :, :])), diffu, + # (Δx, @view(Δy[1, :, :]), @view(Δy[2, :, :]))) + @backgroundif (threads==:outer) begin + flow!(x, u, Δx; threads=(threads==:inner)) + end begin + flow!(@view(y[1, :, :]), u, @view(Δy[1, :, :]); threads=(threads==:inner)) + flow!(@view(y[2, :, :]), u, @view(Δy[2, :, :]); threads=(threads==:inner)) + end + else + flow!(x, u, Δx) + end +end + +function pdflow!(x, Δx, y, Δy, z, Δz, u, dual_flow; threads=:none) + if dual_flow + @backgroundif (threads==:outer) begin + flow!(x, u, Δx; threads=(threads==:inner)) + flow!(z, u, Δz; threads=(threads==:inner)) + end begin + flow!(@view(y[1, :, :]), u, @view(Δy[1, :, :]); threads=(threads==:inner)) + flow!(@view(y[2, :, :]), u, @view(Δy[2, :, :]); threads=(threads==:inner)) + end + else + flow!(x, u, Δx; threads=(threads==:inner)) + flow!(z, u, Δz; threads=(threads==:inner)) + end +end + +# Additional method for Greedy +function pdflow!(x, Δx, y, Δy, u; threads=:none) + @assert(size(u)==(2,)) + Δx .= x + Δy .= y + flow!(x, u; threads=(threads==:inner)) + Dxx = similar(Δy) + DΔx = similar(Δy) + ∇₂!(Dxx, x) + ∇₂!(DΔx, Δx) + inds = abs.(Dxx) .≤ 1e-1 + Dxx[inds] .= 1 + DΔx[inds] .= 1 + y .= y.* DΔx ./ Dxx +end + +# Additional method for Rotation +function pdflow!(x, Δx, y, u; threads=:none) + @assert(size(u)==(2,)) + Δx .= x + flow!(x, u; threads=(threads==:inner)) + + (m,n) = size(x) + dx = similar(y) + dx_banana = similar(y) + ∇₂!(dx, Δx) + ∇₂!(dx_banana, x) + + for i=1:m + for j=1:n + ndx = @views sum(dx[:, i, j].^2) + ndx_banana = @views sum(dx_banana[:, i, j].^2) + if ndx > 1e-4 && ndx_banana > 1e-4 + A = dx[:, i, j] + B = dx_banana[:, i, j] + theta = atan(B[1] * A[2] - B[2] * A[1], B[1] * A[1] + B[2] * A[2]) # Oriented angle from A to B + cos_theta = cos(theta) + sin_theta = sin(theta) + a = cos_theta * y[1, i, j] - sin_theta * y[2, i, j] + b = sin_theta * y[1, i, j] + cos_theta * y[2, i, j] + y[1, i, j] = a + y[2, i, j] = b + end + end + end +end + +# Additional method for Dual Scaling +function pdflow!(x, y, u; threads=:none) + @assert(size(u)==(2,)) + oldx = copy(x) + flow!(x, u; threads=(threads==:inner)) + C = similar(y) + cc = abs.(x-oldx) + cm = max(1e-12,maximum(cc)) + c = 1 .* (1 .- cc./ cm) .^(10) + C[1,:,:] .= c + C[2,:,:] .= c + y .= C.*y +end + + +########################## +# PET +########################## +function petflow_interp!(x::AbstractImage, tmp::AbstractImage, u::DisplacementConstant, theta_known::DisplacementConstant; + threads = false) + tmp .= x + center_point = center(x) .+ u + tform = recenter(RotMatrix(theta_known[1]), center_point) + tmp = warp(x, tform, axes(x), fillvalue=Flat()) + x .= tmp +end + +petflow! = petflow_interp! + +function petpdflow!(x, Δx, y, Δy, u, theta_known, dual_flow; threads=:none) + if dual_flow + @backgroundif (threads==:outer) begin + petflow!(x, Δx, u, theta_known; threads=(threads==:inner)) + end begin + petflow!(@view(y[1, :, :]), @view(Δy[1, :, :]), u, theta_known; threads=(threads==:inner)) + petflow!(@view(y[2, :, :]), @view(Δy[2, :, :]), u, theta_known; threads=(threads==:inner)) + end + else + petflow!(x, Δx, u, theta_known) + end +end + +# Method for greedy predictor +function petpdflow!(x, Δx, y, Δy, u, theta_known, dual_flow, β; threads=:none) + oldx = copy(x) + center_point = center(x) .+ u + tform = recenter(RotMatrix(theta_known[1]), center_point) + Δx = warp(x, tform, axes(x), fillvalue=Flat()) + @. x = Δx + @. Δy = y + if dual_flow + Dxx = copy(Δy) + DΔx = copy(Δy) + ∇₂!(Dxx, x) + ∇₂!(DΔx, oldx) + inds = abs.(Dxx) .≤ β + Dxx[inds] .= 1 + DΔx[inds] .= 1 + y .= y.* DΔx ./ Dxx + end +end + +# Method for affine predictor +function petpdflow!(x, Δx, y, u, theta_known, dual_flow; threads=:none) + oldx = copy(x) + center_point = center(x) .+ u + tform = recenter(RotMatrix(theta_known[1]), center_point) + Δx = warp(x, tform, axes(x), fillvalue=Flat()) + @. x = Δx + C = similar(y) + cc = abs.(x-oldx) + if dual_flow + cm = max(1e-12,maximum(cc)) + c = 1 .* (1 .- cc./ cm) .^(10) + C[1,:,:] .= c + C[2,:,:] .= c + y .= C.*y + end +end + +# Method for rotation prediction (exploiting property of inverse rotation) +function petpdflow!(x, Δx, y, Δy, u, theta_known, dual_flow, β₁, β₂; threads=:none) + if dual_flow + @backgroundif (threads==:outer) begin + petflow!(x, Δx, u, theta_known; threads=(threads==:inner)) + end begin + petflow!(@view(y[1, :, :]), @view(Δy[1, :, :]), u, -theta_known; threads=(threads==:inner)) + petflow!(@view(y[2, :, :]), @view(Δy[2, :, :]), u, -theta_known; threads=(threads==:inner)) + end + else + petflow!(x, Δx, u, theta_known) + end +end + +########################## +# Linearised optical flow +########################## + +# ⟨⟨u, ∇b⟩⟩ +function pointwise_gradiprod_2d!(y::Image, vtmp::Gradient, + u::DisplacementFull, b::Image; + add = false) + ∇₂c!(vtmp, b) + + u′=reshape(u, (size(u, 1), prod(size(u)[2:end]))) + vtmp′=reshape(vtmp, (size(vtmp, 1), prod(size(vtmp)[2:end]))) + y′=reshape(y, prod(size(y))) + + if add + @simd for i = 1:length(y′) + @inbounds y′[i] += dot(@view(u′[:, i]), @view(vtmp′[:, i])) + end + else + @simd for i = 1:length(y′) + @inbounds y′[i] = dot(@view(u′[:, i]), @view(vtmp′[:, i])) + end + end +end + +function pointwise_gradiprod_2d!(y::Image, vtmp::Gradient, + u::DisplacementConstant, b::Image; + add = false) + ∇₂c!(vtmp, b) + + vtmp′=reshape(vtmp, (size(vtmp, 1), prod(size(vtmp)[2:end]))) + y′=reshape(y, prod(size(y))) + + if add + @simd for i = 1:length(y′) + @inbounds y′[i] += dot(u, @view(vtmp′[:, i])) + end + else + @simd for i = 1:length(y′) + @inbounds y′[i] = dot(u, @view(vtmp′[:, i])) + end + end +end + +# ∇b ⋅ y +function pointwise_gradiprod_2dᵀ!(u::DisplacementFull, y::Image, b::Image) + ∇₂c!(u, b) + + u′=reshape(u, (size(u, 1), prod(size(u)[2:end]))) + y′=reshape(y, prod(size(y))) + + @simd for i=1:length(y′) + @inbounds @. u′[:, i] *= y′[i] + end +end + +function pointwise_gradiprod_2dᵀ!(u::DisplacementConstant, y::Image, b::Image) + @assert(size(y)==size(b) && size(u)==(2,)) + u .= 0 + ∇₂cfold!(b, nothing) do g, st, (i, j) + @inbounds u .+= g.*y[i, j] + return st + end + # Reweight to be with respect to 𝟙^*𝟙 inner product. + u ./= prod(size(b)) +end + +mutable struct ConstantDisplacementHornSchunckData + M₀::Array{Float64,2} + z::Array{Float64,1} + Mv::Array{Float64,2} + av::Array{Float64,1} + cv::Float64 + + function ConstantDisplacementHornSchunckData() + return new(zeros(2, 2), zeros(2), zeros(2,2), zeros(2), 0) + end +end + +# For DisplacementConstant, for the simple prox step +# +# (1) argmin_u 1/(2τ)|u-ũ|^2 + (θ/2)|b⁺-b+<<u-ŭ,∇b>>|^2 + (λ/2)|u-ŭ|^2, +# +# construct matrix M₀ and vector z such that we can solve u from +# +# (2) (I/τ+M₀)u = M₀ŭ + ũ/τ - z +# +# Note that the problem +# +# argmin_u 1/(2τ)|u-ũ|^2 + (θ/2)|b⁺-b+<<u-ŭ,∇b>>|^2 + (λ/2)|u-ŭ|^2 +# + (θ/2)|b⁺⁺-b⁺+<<uʹ-u,∇b⁺>>|^2 + (λ/2)|u-uʹ|^2 +# +# has with respect to u the system +# +# (I/τ+M₀+M₀ʹ)u = M₀ŭ + M₀ʹuʹ + ũ/τ - z + zʹ, +# +# where the primed variables correspond to (2) for (1) for uʹ in place of u: +# +# argmin_uʹ 1/(2τ)|uʹ-ũʹ|^2 + (θ/2)|b⁺⁺-b⁺+<<uʹ-u,∇b⁺>>|^2 + (λ/2)|uʹ-u|^2 +# +function horn_schunck_reg_prox_op!(hs::ConstantDisplacementHornSchunckData, + bnext::Image, b::Image, θ, λ, T) + @assert(size(b)==size(bnext)) + w = prod(size(b)) + z = hs.z + cv = 0 + # Factors of symmetric matrix [a c; c d] + a, c, d = 0.0, 0.0, 0.0 + # This used to use ∇₂cfold but it is faster to allocate temporary + # storage for the full gradient due to probably better memory and SIMD + # instruction usage. + g = zeros(2, size(b)...) + ∇₂c!(g, b) + @inbounds for i=1:size(b, 1) + for j=1:size(b, 2) + δ = bnext[i,j]-b[i,j] + @. z += g[:,i,j]*δ + cv += δ*δ + a += g[1,i,j]*g[1,i,j] + c += g[1,i,j]*g[2,i,j] + d += g[2,i,j]*g[2,i,j] + end + end + w₀ = λ + w₂ = θ/w + aʹ = w₀ + w₂*a + cʹ = w₂*c + dʹ = w₀ + w₂*d + hs.M₀ .= [aʹ cʹ; cʹ dʹ] + hs.Mv .= [w*λ+θ*a θ*c; θ*c w*λ+θ*d] + hs.cv = cv*θ + hs.av .= hs.z.*θ + hs.z .*= w₂/T +end + +# Solve the 2D system (I/τ+M₀)u = z +@inline function mldivide_step_plus_sym2x2!(u, M₀, z, τ) + a = 1/τ+M₀[1, 1] + c = M₀[1, 2] + d = 1/τ+M₀[2, 2] + u .= ([d -c; -c a]*z)./(a*d-c*c) +end + +function horn_schunck_reg_prox!(u::DisplacementConstant, bnext::Image, b::Image, + θ, λ, T, τ) + hs=ConstantDisplacementHornSchunckData() + horn_schunck_reg_prox_op!(hs, bnext, b, θ, λ, T) + mldivide_step_plus_sym2x2!(u, hs.M₀, (u./τ)-hs.z, τ) +end + +function flow_grad!(x::Image, vtmp::Gradient, u::Displacement; δ=nothing) + if !isnothing(δ) + u = δ.*u + end + pointwise_gradiprod_2d!(x, vtmp, u, x; add=true) +end + +# Error b-b_prev+⟨⟨u, ∇b⟩⟩ for Horn–Schunck type penalisation +function linearised_optical_flow_error(u::Displacement, b::Image, b_prev::Image) + imdim = size(b) + vtmp = zeros(2, imdim...) + tmp = b-b_prev + pointwise_gradiprod_2d!(tmp, vtmp, u, b_prev; add=true) + return tmp +end + +############################################## +# Helper to smooth data for Horn–Schunck term +############################################## + +function filter_hs(b, b_next, b_next_filt, kernel) + if kernel==nothing + f = x -> x + else + f = x -> simple_imfilter(x, kernel; threads=true) + end + + # We already filtered b in the previous step (b_next in that step) + b_filt = b_next_filt==nothing ? f(b) : b_next_filt + b_next_filt = f(b_next) + + return b_filt, b_next_filt +end + +end # Module