| |
1 ################### |
| |
2 # Image generation |
| |
3 ################### |
| |
4 |
| |
5 module ImGenerate |
| |
6 |
| |
7 using ColorTypes: Gray |
| |
8 import TestImages |
| |
9 # We don't really *directly* depend on QuartzImageIO. The import here is |
| |
10 # merely a workaround to suppress warnings when loading TestImages. |
| |
11 # Something is broken in those packages. |
| |
12 import QuartzImageIO |
| |
13 |
| |
14 using AlgTools.Util |
| |
15 using AlgTools.Comms |
| |
16 using ImageTools.Translate |
| |
17 |
| |
18 using ..OpticalFlow: Image, DisplacementConstant, DisplacementFull |
| |
19 using ..Radon |
| |
20 |
| |
21 # Added for reproducibility |
| |
22 import StableRNGs: StableRNG, Random |
| |
23 const rng = StableRNG(9182737465) |
| |
24 |
| |
25 # Added for PET |
| |
26 import PoissonRandom: pois_rand |
| |
27 import Random: shuffle |
| |
28 import Images: center, warp |
| |
29 import CoordinateTransformations: recenter |
| |
30 import Rotations: RotMatrix |
| |
31 import Interpolations: Flat |
| |
32 |
| |
33 |
| |
34 ############## |
| |
35 # Our exports |
| |
36 ############## |
| |
37 |
| |
38 export ImGen, |
| |
39 OnlineData, |
| |
40 imgen_square, |
| |
41 imgen_shake, |
| |
42 PetOnlineData, |
| |
43 imgen_shepplogan_radon |
| |
44 |
| |
45 ################## |
| |
46 # Data structures |
| |
47 ################## |
| |
48 |
| |
49 struct ImGen |
| |
50 f :: Function |
| |
51 dim :: Tuple{Int64,Int64} |
| |
52 Λ :: Float64 |
| |
53 dynrange :: Float64 |
| |
54 name :: String |
| |
55 end |
| |
56 |
| |
57 struct OnlineData{DisplacementT} |
| |
58 b_true :: Image |
| |
59 b_noisy :: Image |
| |
60 v :: DisplacementT |
| |
61 v_true :: DisplacementT |
| |
62 v_cumul_true :: DisplacementT |
| |
63 end |
| |
64 |
| |
65 struct PetOnlineData{DisplacementT} |
| |
66 b_true :: Image |
| |
67 sinogram_true :: Image |
| |
68 sinogram_noisy :: Image |
| |
69 v :: DisplacementT |
| |
70 v_true :: DisplacementT |
| |
71 v_cumul_true :: DisplacementT |
| |
72 theta :: DisplacementT # theta = thetaknown, theta_cumul |
| |
73 S :: Image |
| |
74 end |
| |
75 |
| |
76 ################### |
| |
77 # Shake generation |
| |
78 ################### |
| |
79 |
| |
80 function make_const_v(displ, sz) |
| |
81 v = zeros(2, sz...) |
| |
82 v[1, :, :] .= displ[1] |
| |
83 v[2, :, :] .= displ[2] |
| |
84 return v |
| |
85 end |
| |
86 |
| |
87 function shake(params) |
| |
88 if !haskey(params, :shaketype) || params.shaketype == :gaussian |
| |
89 return () -> params.shake.*randn(rng,2) |
| |
90 elseif params.shaketype == :disk |
| |
91 return () -> begin |
| |
92 θ = 2π*rand(rng,Float64) |
| |
93 r = params.shake*√(rand(rng,Float64)) |
| |
94 return [r*cos(θ), r*sin(θ)] |
| |
95 end |
| |
96 elseif params.shaketype == :circle |
| |
97 return () -> begin |
| |
98 θ = 2π*rand(rng,Float64) |
| |
99 r = params.shake |
| |
100 return [r*cos(θ), r*sin(θ)] |
| |
101 end |
| |
102 else |
| |
103 error("Unknown shaketype $(params.shaketype)") |
| |
104 end |
| |
105 end |
| |
106 |
| |
107 pixelwise = (shakefn, sz) -> () -> make_const_u(shakefn(), sz) |
| |
108 |
| |
109 |
| |
110 function rotatebytheta(params) |
| |
111 r = params.rotation_factor*(2*rand(rng)-1) |
| |
112 return r |
| |
113 end |
| |
114 |
| |
115 function generate_radonmask(params) |
| |
116 imdim = params.radondims |
| |
117 sino_sparse = params.sino_sparsity |
| |
118 numone = Int64(round(sino_sparse*imdim[1]*imdim[2])) |
| |
119 numzero = imdim[1]*imdim[2]-numone |
| |
120 A = shuffle(rng,reshape([ones(numone); zeros(numzero)],(imdim[1],imdim[2]))) |
| |
121 return A |
| |
122 end |
| |
123 |
| |
124 ################ |
| |
125 # Moving square |
| |
126 ################ |
| |
127 |
| |
128 function generate_square(sz, |
| |
129 :: Type{DisplacementT}, |
| |
130 datachannel :: Channel{OnlineData{DisplacementT}}, |
| |
131 params) where DisplacementT |
| |
132 |
| |
133 if false |
| |
134 v₀ = make_const_v(0.1.*(-1, 1), sz) |
| |
135 nextv = () -> v₀ |
| |
136 elseif DisplacementT == DisplacementFull |
| |
137 nextv = pixelwise(shake(params), sz) |
| |
138 elseif DisplacementT == DisplacementConstant |
| |
139 nextv = shake(params) |
| |
140 else |
| |
141 @error "Invalid DisplacementT" |
| |
142 end |
| |
143 |
| |
144 # Constant linear displacement everywhere has Jacobian determinant one |
| |
145 # (modulo the boundaries which we ignore here) |
| |
146 m = round(Int, sz[1]/5) |
| |
147 b_orig = zeros(sz...) |
| |
148 b_orig[sz[1].-(2*m:3*m), 2*m:3*m] .= 1 |
| |
149 |
| |
150 v_true = nextv() |
| |
151 v_cumul = copy(v_true) |
| |
152 |
| |
153 while true |
| |
154 # Flow original data and add noise |
| |
155 b_true = zeros(sz...) |
| |
156 translate_image!(b_true, b_orig, v_cumul; threads=true) |
| |
157 b = b_true .+ params.noise_level.*randn(rng,sz...) |
| |
158 v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) |
| |
159 # Pass true data to iteration routine |
| |
160 data = OnlineData{DisplacementT}(b_true, b, v, v_true, v_cumul) |
| |
161 if !put_unless_closed!(datachannel, data) |
| |
162 return |
| |
163 end |
| |
164 # Next step shake |
| |
165 v_true = nextv() |
| |
166 v_cumul .+= v_true |
| |
167 end |
| |
168 end |
| |
169 |
| |
170 function imgen_square(sz) |
| |
171 return ImGen(curry(generate_square, sz), sz, 1, 1, "square$(sz[1])x$(sz[2])") |
| |
172 end |
| |
173 |
| |
174 ################ |
| |
175 # Shake a photo |
| |
176 ################ |
| |
177 |
| |
178 function generate_shake_image(im, sz, |
| |
179 :: Type{DisplacementConstant}, |
| |
180 datachannel :: Channel{OnlineData{DisplacementConstant}}, |
| |
181 params :: NamedTuple) |
| |
182 |
| |
183 # Restart the seed to enable comparison across predictors |
| |
184 Random.seed!(rng,9182737465) |
| |
185 |
| |
186 nextv = shake(params) |
| |
187 v_true = nextv() |
| |
188 v_cumul = copy(v_true) |
| |
189 |
| |
190 while true |
| |
191 # Extract subwindow of original image and add noise |
| |
192 b_true = zeros(sz...) |
| |
193 extract_subimage!(b_true, im, v_cumul; threads=true) |
| |
194 b = b_true .+ params.noise_level.*randn(rng,sz...) |
| |
195 v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) |
| |
196 # Pass data to iteration routine |
| |
197 data = OnlineData{DisplacementConstant}(b_true, b, v, v_true, v_cumul) |
| |
198 if !put_unless_closed!(datachannel, data) |
| |
199 return |
| |
200 end |
| |
201 # Next step shake |
| |
202 v_true = nextv() |
| |
203 v_cumul .+= v_true |
| |
204 end |
| |
205 end |
| |
206 |
| |
207 function imgen_shake(imname, sz) |
| |
208 im = Float64.(Gray.(TestImages.testimage(imname))) |
| |
209 dynrange = maximum(im) |
| |
210 return ImGen(curry(generate_shake_image, im, sz), sz, 1, dynrange, |
| |
211 "$(imname)$(sz[1])x$(sz[2])") |
| |
212 end |
| |
213 |
| |
214 |
| |
215 |
| |
216 ######################################################################## |
| |
217 # PETscan |
| |
218 ######################################################################## |
| |
219 function generate_radon(im, sz, |
| |
220 :: Type{DisplacementConstant}, |
| |
221 datachannel :: Channel{PetOnlineData{DisplacementConstant}}, |
| |
222 params :: NamedTuple) |
| |
223 |
| |
224 # Restart the seed to enable comparison across predictors |
| |
225 Random.seed!(rng,9182737465) |
| |
226 |
| |
227 nextv = shake(params) |
| |
228 v_true = nextv() |
| |
229 v_cumul = copy(v_true) |
| |
230 |
| |
231 S_true = generate_radonmask(params) |
| |
232 |
| |
233 theta_true = rotatebytheta(params) |
| |
234 theta_cumul = copy(theta_true) |
| |
235 |
| |
236 while true |
| |
237 # Define the transformation matrix |
| |
238 center_point = (sz[1]/2 + v_true[1], sz[2]/2 + v_true[2]) |
| |
239 tform = recenter(RotMatrix(theta_cumul), center_point) |
| |
240 |
| |
241 # Apply the transformation to the image using warp |
| |
242 b_true = copy(warp(im, tform, axes(im), fillvalue=Flat())) |
| |
243 |
| |
244 v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) |
| |
245 theta = theta_true*(1.0 + params.rotation_noise_level.*randn(rng)) |
| |
246 |
| |
247 # Generate the true and noisy sinograms |
| |
248 sinogram_true = zeros(params.radondims...) |
| |
249 sinogram_true .*= params.scale |
| |
250 radon!(sinogram_true, b_true) |
| |
251 sinogram_noisy = copy(sinogram_true) |
| |
252 |
| |
253 for i=1:params.radondims[1], j=1:params.radondims[2] |
| |
254 sinogram_noisy[i, j] += pois_rand(rng,params.noise_level) |
| |
255 end |
| |
256 |
| |
257 # Pass data to iteration routine |
| |
258 data = PetOnlineData{DisplacementConstant}(b_true, sinogram_true, sinogram_noisy, v, v_true, v_cumul, [theta, theta_cumul], S_true) |
| |
259 if !put_unless_closed!(datachannel, data) |
| |
260 return |
| |
261 end |
| |
262 |
| |
263 # Next step shake |
| |
264 v_true = nextv() |
| |
265 v_cumul .+= v_true |
| |
266 # Next theta |
| |
267 theta_true = rotatebytheta(params) |
| |
268 theta_cumul += theta_true |
| |
269 # Next sinogram mask |
| |
270 S_true = generate_radonmask(params) |
| |
271 end |
| |
272 end |
| |
273 |
| |
274 |
| |
275 function imgen_shepplogan_radon(origsize,sz) |
| |
276 im = convert(Array{Float64},TestImages.shepp_logan(origsize, highContrast=true)) |
| |
277 dynrange = maximum(im) |
| |
278 return ImGen(curry(generate_radon, im, sz), sz, 1, dynrange, "shepplogan$(sz[1])x$(sz[2])") |
| |
279 end |
| |
280 |
| |
281 |
| |
282 end # Module |