Thu, 04 Jul 2024 03:09:56 +1000
modified rotation and added new strict tv preserving predictor
5 | 1 | #################################################################### |
2 | # Predictive online PDPS for optical flow with known velocity field | |
3 | #################################################################### | |
4 | ||
5 | __precompile__() | |
6 | ||
7 | module AlgorithmProximal | |
8 | ||
9 | identifier = "pdps_known_proximal" | |
10 | ||
11 | using Printf | |
12 | ||
13 | using AlgTools.Util | |
14 | import AlgTools.Iterate | |
15 | using ImageTools.Gradient | |
16 | ||
17 | using ..OpticalFlow: ImageSize, | |
18 | Image, | |
19 | pdflow! | |
20 | ||
21 | ######################### | |
22 | # Iterate initialisation | |
23 | ######################### | |
24 | ||
25 | function init_rest(x::Image) | |
26 | imdim=size(x) | |
27 | ||
28 | y = zeros(2, imdim...) | |
29 | Δx = copy(x) | |
30 | Δy = copy(y) | |
31 | x̄ = copy(x) | |
32 | ||
33 | return x, y, Δx, Δy, x̄ | |
34 | end | |
35 | ||
36 | function init_iterates(xinit::Image) | |
37 | return init_rest(copy(xinit)) | |
38 | end | |
39 | ||
40 | function init_iterates(dim::ImageSize) | |
41 | return init_rest(zeros(dim...)) | |
42 | end | |
43 | ||
44 | ############ | |
45 | # Algorithm | |
46 | ############ | |
47 | ||
48 | function step_lengths(params, γ, R_K²) | |
49 | ρ̃₀, τ₀, σ₀, σ̃₀ = params.ρ̃₀, params.τ₀, params.σ₀, params.σ̃₀ | |
50 | δ = params.δ | |
51 | ρ = isdefined(params, :phantom_ρ) ? params.phantom_ρ : params.ρ | |
52 | Λ = params.Λ | |
53 | Θ = params.dual_flow ? Λ : 1 | |
54 | ||
55 | τ = τ₀/γ | |
56 | @assert(1+γ*τ ≥ Λ) | |
57 | σ = σ₀*min(1/(τ*R_K²), 1/max(0, τ*R_K²/((1+γ*τ-Λ)*(1-δ))-ρ)) | |
58 | q = δ*(1+σ*ρ)/Θ | |
59 | if 1 ≥ q | |
60 | σ̃ = σ̃₀*σ/q | |
61 | #ρ̃ = ρ̃₀*max(0, ((Θ*σ)/(2*δ*σ̃^2*(1+σ*ρ))+1/(2σ)-1/σ̃)) | |
62 | ρ̃ = max(0, (1-q)/(2*σ)) | |
63 | else | |
64 | σ̃ = σ̃₀*σ/(q*(1-√(1-1/q))) | |
65 | ρ̃ = 0 | |
66 | end | |
67 | ||
68 | println("Step length parameters: τ=$(τ), σ=$(σ), σ̃=$(σ̃), ρ̃=$(ρ̃)") | |
69 | ||
70 | return τ, σ, σ̃, ρ̃ | |
71 | end | |
72 | ||
73 | function solve( :: Type{DisplacementT}; | |
74 | dim :: ImageSize, | |
75 | iterate = AlgTools.simple_iterate, | |
76 | params::NamedTuple) where DisplacementT | |
77 | ||
78 | ################################ | |
79 | # Extract and set up parameters | |
80 | ################################ | |
81 | ||
82 | α, ρ = params.α, params.ρ | |
83 | R_K² = ∇₂_norm₂₂_est² | |
84 | γ = 1 | |
85 | τ, σ, σ̃, ρ̃ = step_lengths(params, γ, R_K²) | |
86 | ||
87 | ###################### | |
88 | # Initialise iterates | |
89 | ###################### | |
90 | ||
91 | x, y, Δx, Δy, x̄ = init_iterates(dim) | |
92 | init_data = (params.init == :data) | |
93 | ||
94 | #################### | |
95 | # Run the algorithm | |
96 | #################### | |
97 | ||
98 | v = iterate(params) do verbose :: Function, | |
99 | b :: Image, | |
100 | v_known :: DisplacementT, | |
101 | 🚫unused_b_next :: Image | |
102 | ||
103 | ################## | |
104 | # Prediction step | |
105 | ################## | |
106 | if init_data | |
107 | x .= b | |
108 | init_data = false | |
109 | end | |
110 | ||
111 | pdflow!(x, Δx, y, Δy, v_known, params.dual_flow) | |
112 | ||
113 | # Proximal step | |
114 | ∇₂!(Δy, x) | |
115 | @. y = (y + σ̃*Δy)/(1 + σ̃*(ρ̃+ρ/α)) | |
116 | proj_norm₂₁ball!(y, α) | |
117 | ||
118 | ||
119 | ############ | |
120 | # PDPS step | |
121 | ############ | |
122 | ||
123 | ∇₂ᵀ!(Δx, y) # primal step: | |
124 | @. x̄ = x # | save old x for over-relax | |
125 | @. x = (x-τ*(Δx-b))/(1+τ) # | prox | |
126 | @. x̄ = 2x - x̄ # over-relax | |
127 | ∇₂!(Δy, x̄) # dual step: y | |
128 | @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | | |
129 | proj_norm₂₁ball!(y, α) # | prox | |
130 | ||
131 | ################################ | |
132 | # Give function value if needed | |
133 | ################################ | |
134 | v = verbose() do | |
135 | ∇₂!(Δy, x) | |
136 | value = norm₂²(b-x)/2 + params.α*γnorm₂₁(Δy, params.ρ) | |
137 | value, x, [NaN, NaN], nothing | |
138 | end | |
139 | ||
140 | v | |
141 | end | |
142 | ||
143 | return x, y, v | |
144 | end | |
145 | ||
146 | end # Module | |
147 | ||
148 |