Sun, 21 Apr 2024 13:43:18 +0300
added zero dual in PET
0 | 1 | ###################################################################### |
2 | # Predictive online PDPS for optical flow with unknown velocity field | |
3 | ###################################################################### | |
4 | ||
5 | __precompile__() | |
6 | ||
7 | module AlgorithmBothCumul | |
8 | ||
9 | identifier = "pdps_unknown_cumul" | |
10 | ||
11 | using Printf | |
12 | ||
13 | using AlgTools.Util | |
14 | import AlgTools.Iterate | |
15 | using ImageTools.Gradient | |
16 | using ImageTools.ImFilter | |
17 | ||
18 | using ..OpticalFlow: Image, | |
19 | ImageSize, | |
20 | DisplacementConstant, | |
21 | pdflow!, | |
22 | horn_schunck_reg_prox!, | |
23 | pointwise_gradiprod_2d! | |
24 | ||
25 | using ..AlgorithmBothGreedyV: init_iterates | |
26 | using ..Algorithm: step_lengths | |
27 | ||
28 | ############ | |
29 | # Algorithm | |
30 | ############ | |
31 | ||
32 | function solve( :: Type{DisplacementT}; | |
33 | dim :: ImageSize, | |
34 | iterate = AlgTools.simple_iterate, | |
35 | params::NamedTuple) where DisplacementT | |
36 | ||
37 | ###################### | |
38 | # Initialise iterates | |
39 | ###################### | |
40 | ||
41 | x, y, Δx, Δy, x̄, u = init_iterates(DisplacementT, dim) | |
42 | init_data = (params.init == :data) | |
43 | ||
44 | # … for tracking cumulative movement | |
45 | if DisplacementT == DisplacementConstant | |
46 | ucumul = zeros(size(u)...) | |
47 | end | |
48 | ||
49 | ############################################# | |
50 | # Extract parameters and set up step lengths | |
51 | ############################################# | |
52 | ||
53 | α, ρ, λ, θ, T = params.α, params.ρ, params.λ, params.θ, params.timestep | |
54 | R_K² = ∇₂_norm₂₂_est² | |
55 | γ = 1 | |
56 | τ, σ, σ̃, ρ̃ = step_lengths(params, γ, R_K²) | |
57 | ||
58 | kernel = params.kernel | |
59 | ||
60 | #################### | |
61 | # Run the algorithm | |
62 | #################### | |
63 | ||
64 | b₀=nothing | |
65 | b₀_filt=nothing | |
66 | u_prev=zeros(size(u)) | |
67 | ||
68 | v = iterate(params) do verbose :: Function, | |
69 | b :: Image, | |
70 | 🚫unused_v_known :: DisplacementT, | |
71 | 🚫unused_b_next :: Image | |
72 | ||
73 | ######################################################### | |
74 | # Smoothen data for Horn–Schunck term; zero initial data | |
75 | ######################################################### | |
76 | ||
77 | b_filt = (kernel==nothing ? b : simple_imfilter(b, kernel)) | |
78 | ||
79 | if b₀ == nothing | |
80 | b₀ = b | |
81 | b₀_filt = b_filt | |
82 | end | |
83 | ||
84 | ################################################ | |
85 | # Prediction step | |
86 | # We leave u as-is in this cumulative version | |
87 | ################################################ | |
88 | ||
89 | if init_data | |
90 | x .= b | |
91 | init_data = false | |
92 | end | |
93 | ||
94 | pdflow!(x, Δx, y, Δy, u-u_prev, params.dual_flow) | |
95 | ||
96 | if params.prox_predict | |
97 | ∇₂!(Δy, x) | |
98 | @. y = (y + σ̃*Δy)/(1 + σ̃*(ρ̃+ρ/α)) | |
99 | proj_norm₂₁ball!(y, α) | |
100 | end | |
101 | ||
102 | # Store current cumulative displacement before updating in next step. | |
103 | u_prev .= u | |
104 | ||
105 | ############ | |
106 | # PDPS step | |
107 | ############ | |
108 | ||
109 | ∇₂ᵀ!(Δx, y) # primal step: | |
110 | @. x̄ = x # | save old x for over-relax | |
111 | @. x = (x-τ*(Δx-b))/(1+τ) # | prox | |
112 | horn_schunck_reg_prox!(u, b_filt, b₀_filt, τ, θ, λ, T) | |
113 | @. x̄ = 2x - x̄ # over-relax | |
114 | ∇₂!(Δy, x̄) # dual step: y | |
115 | @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | | |
116 | proj_norm₂₁ball!(y, α) # | prox | |
117 | ||
118 | ######################################################## | |
119 | # Give function value and cumulative movement if needed | |
120 | ######################################################## | |
121 | v = verbose() do | |
122 | ∇₂!(Δy, x) | |
123 | tmp = zeros(size(b_filt)) | |
124 | pointwise_gradiprod_2d!(tmp, Δy, u, b₀_filt) | |
125 | value = (norm₂²(b-x)/2 + θ*norm₂²((b_filt-b₀_filt)./T+tmp) | |
126 | + λ*norm₂²(u)/2 + α*γnorm₂₁(Δy, ρ)) | |
127 | ||
128 | value, x, u, nothing | |
129 | end | |
130 | ||
131 | return v | |
132 | end | |
133 | ||
134 | return x, y, v | |
135 | end | |
136 | ||
137 | end # Module | |
138 | ||
139 |