Thu, 18 Apr 2024 10:51:10 +0300
commit before adding PET
| 0 | 1 | ################################ |
| 2 | # Code relevant to optical flow | |
| 3 | ################################ | |
| 4 | ||
| 5 | __precompile__() | |
| 6 | ||
| 7 | module OpticalFlow | |
| 8 | ||
| 9 | using AlgTools.Util | |
| 10 | using ImageTools.Gradient | |
| 11 | import ImageTools.Translate | |
| 12 | using ImageTools.ImFilter | |
| 13 | ||
| 14 | ########## | |
| 15 | # Exports | |
| 16 | ########## | |
| 17 | ||
| 18 | export flow!, | |
| 19 | pdflow!, | |
| 20 | flow_grad!, | |
| 21 | flow_interp!, | |
| 22 | estimate_Λ², | |
| 23 | estimate_linear_Λ², | |
| 24 | pointwise_gradiprod_2d!, | |
| 25 | pointwise_gradiprod_2dᵀ!, | |
| 26 | horn_schunck_reg_prox!, | |
| 27 | horn_schunck_reg_prox_op!, | |
| 28 | mldivide_step_plus_sym2x2!, | |
| 29 | linearised_optical_flow_error, | |
| 30 | Image, AbstractImage, ImageSize, | |
| 31 | Gradient, Displacement, | |
| 32 | DisplacementFull, DisplacementConstant, | |
| 33 | HornSchunckData, | |
| 34 | filter_hs | |
| 35 | ||
| 36 | ############################################### | |
| 37 | # Types (several imported from ImageTools.Translate) | |
| 38 | ############################################### | |
| 39 | ||
| 40 | Image = Translate.Image | |
| 41 | AbstractImage = AbstractArray{Float64,2} | |
| 42 | Displacement = Translate.Displacement | |
| 43 | DisplacementFull = Translate.DisplacementFull | |
| 44 | DisplacementConstant = Translate.DisplacementConstant | |
| 45 | Gradient = Array{Float64,3} | |
| 46 | ImageSize = Tuple{Int64,Int64} | |
| 47 | ||
| 48 | ################################# | |
| 49 | # Displacement field based flow | |
| 50 | ################################# | |
| 51 | ||
| 52 | function flow_interp!(x::AbstractImage, u::Displacement, tmp::AbstractImage; | |
| 53 | threads = false) | |
| 54 | tmp .= x | |
| 55 | Translate.translate_image!(x, tmp, u; threads=threads) | |
| 56 | end | |
| 57 | ||
| 58 | function flow_interp!(x::AbstractImage, u::Displacement; | |
| 59 | threads = false) | |
| 60 | tmp = copy(x) | |
| 61 | Translate.translate_image!(x, tmp, u; threads=threads) | |
| 62 | end | |
| 63 | ||
| 64 | flow! = flow_interp! | |
| 65 | ||
| 66 | function pdflow!(x, Δx, y, Δy, u, dual_flow; threads=:none) | |
| 67 | if dual_flow | |
| 68 | #flow!((x, @view(y[1, :, :]), @view(y[2, :, :])), diffu, | |
| 69 | # (Δx, @view(Δy[1, :, :]), @view(Δy[2, :, :]))) | |
| 70 | @backgroundif (threads==:outer) begin | |
| 71 | flow!(x, u, Δx; threads=(threads==:inner)) | |
| 72 | end begin | |
| 73 | flow!(@view(y[1, :, :]), u, @view(Δy[1, :, :]); threads=(threads==:inner)) | |
| 74 | flow!(@view(y[2, :, :]), u, @view(Δy[2, :, :]); threads=(threads==:inner)) | |
| 75 | end | |
| 76 | else | |
| 77 | flow!(x, u, Δx) | |
| 78 | end | |
| 79 | end | |
| 80 | ||
| 81 | function pdflow!(x, Δx, y, Δy, z, Δz, u, dual_flow; threads=:none) | |
| 82 | if dual_flow | |
| 83 | @backgroundif (threads==:outer) begin | |
| 84 | flow!(x, u, Δx; threads=(threads==:inner)) | |
| 85 | flow!(z, u, Δz; threads=(threads==:inner)) | |
| 86 | end begin | |
| 87 | flow!(@view(y[1, :, :]), u, @view(Δy[1, :, :]); threads=(threads==:inner)) | |
| 88 | flow!(@view(y[2, :, :]), u, @view(Δy[2, :, :]); threads=(threads==:inner)) | |
| 89 | end | |
| 90 | else | |
| 91 | flow!(x, u, Δx; threads=(threads==:inner)) | |
| 92 | flow!(z, u, Δz; threads=(threads==:inner)) | |
| 93 | end | |
| 94 | end | |
| 95 | ||
| 5 | 96 | # Additional method for Greedy |
| 97 | function pdflow!(x, Δx, y, Δy, u; threads=:none) | |
| 98 | @assert(size(u)==(2,)) | |
| 99 | Δx .= x | |
| 100 | Δy .= y | |
| 101 | flow!(x, u; threads=(threads==:inner)) | |
| 102 | Dxx = similar(Δy) | |
| 103 | DΔx = similar(Δy) | |
| 104 | ∇₂!(Dxx, x) | |
| 105 | ∇₂!(DΔx, Δx) | |
| 106 | inds = abs.(Dxx) .≤ 1e-1 | |
| 107 | Dxx[inds] .= 1 | |
| 108 | DΔx[inds] .= 1 | |
| 109 | y .= y.* DΔx ./ Dxx | |
| 110 | end | |
| 111 | ||
| 112 | # Additional method for Rotation | |
| 113 | function pdflow!(x, Δx, y, u; threads=:none) | |
| 114 | @assert(size(u)==(2,)) | |
| 115 | Δx .= x | |
| 116 | flow!(x, u; threads=(threads==:inner)) | |
| 117 | ||
| 118 | (m,n) = size(x) | |
| 119 | dx = similar(y) | |
| 120 | dx_banana = similar(y) | |
| 121 | ∇₂!(dx, Δx) | |
| 122 | ∇₂!(dx_banana, x) | |
| 123 | ||
| 124 | for i=1:m | |
| 125 | for j=1:n | |
| 126 | ndx = @views sum(dx[:, i, j].^2) | |
| 127 | ndx_banana = @views sum(dx_banana[:, i, j].^2) | |
| 128 | if ndx > 1e-4 && ndx_banana > 1e-4 | |
| 129 | A = dx[:, i, j] | |
| 130 | B = dx_banana[:, i, j] | |
| 131 | theta = atan(B[1] * A[2] - B[2] * A[1], B[1] * A[1] + B[2] * A[2]) # Oriented angle from A to B | |
| 132 | cos_theta = cos(theta) | |
| 133 | sin_theta = sin(theta) | |
| 134 | a = cos_theta * y[1, i, j] - sin_theta * y[2, i, j] | |
| 135 | b = sin_theta * y[1, i, j] + cos_theta * y[2, i, j] | |
| 136 | y[1, i, j] = a | |
| 137 | y[2, i, j] = b | |
| 138 | end | |
| 139 | end | |
| 140 | end | |
| 141 | end | |
| 142 | ||
| 143 | # Additional method for Dual Scaling | |
| 144 | function pdflow!(x, y, u; threads=:none) | |
| 145 | @assert(size(u)==(2,)) | |
| 146 | oldx = copy(x) | |
| 147 | flow!(x, u; threads=(threads==:inner)) | |
| 148 | C = similar(y) | |
| 149 | cc = abs.(x-oldx) | |
| 150 | cm = max(1e-12,maximum(cc)) | |
| 151 | c = 1 .* (1 .- cc./ cm) .^(10) | |
| 152 | C[1,:,:] .= c | |
| 153 | C[2,:,:] .= c | |
| 154 | y .= C.*y | |
| 155 | end | |
| 156 | ||
| 0 | 157 | ########################## |
| 158 | # Linearised optical flow | |
| 159 | ########################## | |
| 160 | ||
| 161 | # ⟨⟨u, ∇b⟩⟩ | |
| 162 | function pointwise_gradiprod_2d!(y::Image, vtmp::Gradient, | |
| 163 | u::DisplacementFull, b::Image; | |
| 164 | add = false) | |
| 165 | ∇₂c!(vtmp, b) | |
| 166 | ||
| 167 | u′=reshape(u, (size(u, 1), prod(size(u)[2:end]))) | |
| 168 | vtmp′=reshape(vtmp, (size(vtmp, 1), prod(size(vtmp)[2:end]))) | |
| 169 | y′=reshape(y, prod(size(y))) | |
| 170 | ||
| 171 | if add | |
| 172 | @simd for i = 1:length(y′) | |
| 173 | @inbounds y′[i] += dot(@view(u′[:, i]), @view(vtmp′[:, i])) | |
| 174 | end | |
| 175 | else | |
| 176 | @simd for i = 1:length(y′) | |
| 177 | @inbounds y′[i] = dot(@view(u′[:, i]), @view(vtmp′[:, i])) | |
| 178 | end | |
| 179 | end | |
| 180 | end | |
| 181 | ||
| 182 | function pointwise_gradiprod_2d!(y::Image, vtmp::Gradient, | |
| 183 | u::DisplacementConstant, b::Image; | |
| 184 | add = false) | |
| 185 | ∇₂c!(vtmp, b) | |
| 186 | ||
| 187 | vtmp′=reshape(vtmp, (size(vtmp, 1), prod(size(vtmp)[2:end]))) | |
| 188 | y′=reshape(y, prod(size(y))) | |
| 189 | ||
| 190 | if add | |
| 191 | @simd for i = 1:length(y′) | |
| 192 | @inbounds y′[i] += dot(u, @view(vtmp′[:, i])) | |
| 193 | end | |
| 194 | else | |
| 195 | @simd for i = 1:length(y′) | |
| 196 | @inbounds y′[i] = dot(u, @view(vtmp′[:, i])) | |
| 197 | end | |
| 198 | end | |
| 199 | end | |
| 200 | ||
| 201 | # ∇b ⋅ y | |
| 202 | function pointwise_gradiprod_2dᵀ!(u::DisplacementFull, y::Image, b::Image) | |
| 203 | ∇₂c!(u, b) | |
| 204 | ||
| 205 | u′=reshape(u, (size(u, 1), prod(size(u)[2:end]))) | |
| 206 | y′=reshape(y, prod(size(y))) | |
| 207 | ||
| 208 | @simd for i=1:length(y′) | |
| 209 | @inbounds @. u′[:, i] *= y′[i] | |
| 210 | end | |
| 211 | end | |
| 212 | ||
| 213 | function pointwise_gradiprod_2dᵀ!(u::DisplacementConstant, y::Image, b::Image) | |
| 214 | @assert(size(y)==size(b) && size(u)==(2,)) | |
| 215 | u .= 0 | |
| 216 | ∇₂cfold!(b, nothing) do g, st, (i, j) | |
| 217 | @inbounds u .+= g.*y[i, j] | |
| 218 | return st | |
| 219 | end | |
| 220 | # Reweight to be with respect to 𝟙^*𝟙 inner product. | |
| 221 | u ./= prod(size(b)) | |
| 222 | end | |
| 223 | ||
| 224 | mutable struct ConstantDisplacementHornSchunckData | |
| 225 | M₀::Array{Float64,2} | |
| 226 | z::Array{Float64,1} | |
| 227 | Mv::Array{Float64,2} | |
| 228 | av::Array{Float64,1} | |
| 229 | cv::Float64 | |
| 230 | ||
| 231 | function ConstantDisplacementHornSchunckData() | |
| 232 | return new(zeros(2, 2), zeros(2), zeros(2,2), zeros(2), 0) | |
| 233 | end | |
| 234 | end | |
| 235 | ||
| 236 | # For DisplacementConstant, for the simple prox step | |
| 237 | # | |
| 238 | # (1) argmin_u 1/(2τ)|u-ũ|^2 + (θ/2)|b⁺-b+<<u-ŭ,∇b>>|^2 + (λ/2)|u-ŭ|^2, | |
| 239 | # | |
| 240 | # construct matrix M₀ and vector z such that we can solve u from | |
| 241 | # | |
| 242 | # (2) (I/τ+M₀)u = M₀ŭ + ũ/τ - z | |
| 243 | # | |
| 244 | # Note that the problem | |
| 245 | # | |
| 246 | # argmin_u 1/(2τ)|u-ũ|^2 + (θ/2)|b⁺-b+<<u-ŭ,∇b>>|^2 + (λ/2)|u-ŭ|^2 | |
| 247 | # + (θ/2)|b⁺⁺-b⁺+<<uʹ-u,∇b⁺>>|^2 + (λ/2)|u-uʹ|^2 | |
| 248 | # | |
| 249 | # has with respect to u the system | |
| 250 | # | |
| 251 | # (I/τ+M₀+M₀ʹ)u = M₀ŭ + M₀ʹuʹ + ũ/τ - z + zʹ, | |
| 252 | # | |
| 253 | # where the primed variables correspond to (2) for (1) for uʹ in place of u: | |
| 254 | # | |
| 255 | # argmin_uʹ 1/(2τ)|uʹ-ũʹ|^2 + (θ/2)|b⁺⁺-b⁺+<<uʹ-u,∇b⁺>>|^2 + (λ/2)|uʹ-u|^2 | |
| 256 | # | |
| 257 | function horn_schunck_reg_prox_op!(hs::ConstantDisplacementHornSchunckData, | |
| 258 | bnext::Image, b::Image, θ, λ, T) | |
| 259 | @assert(size(b)==size(bnext)) | |
| 260 | w = prod(size(b)) | |
| 261 | z = hs.z | |
| 262 | cv = 0 | |
| 263 | # Factors of symmetric matrix [a c; c d] | |
| 264 | a, c, d = 0.0, 0.0, 0.0 | |
| 265 | # This used to use ∇₂cfold but it is faster to allocate temporary | |
| 266 | # storage for the full gradient due to probably better memory and SIMD | |
| 267 | # instruction usage. | |
| 268 | g = zeros(2, size(b)...) | |
| 269 | ∇₂c!(g, b) | |
| 270 | @inbounds for i=1:size(b, 1) | |
| 271 | for j=1:size(b, 2) | |
| 272 | δ = bnext[i,j]-b[i,j] | |
| 273 | @. z += g[:,i,j]*δ | |
| 274 | cv += δ*δ | |
| 275 | a += g[1,i,j]*g[1,i,j] | |
| 276 | c += g[1,i,j]*g[2,i,j] | |
| 277 | d += g[2,i,j]*g[2,i,j] | |
| 278 | end | |
| 279 | end | |
| 280 | w₀ = λ | |
| 281 | w₂ = θ/w | |
| 282 | aʹ = w₀ + w₂*a | |
| 283 | cʹ = w₂*c | |
| 284 | dʹ = w₀ + w₂*d | |
| 285 | hs.M₀ .= [aʹ cʹ; cʹ dʹ] | |
| 286 | hs.Mv .= [w*λ+θ*a θ*c; θ*c w*λ+θ*d] | |
| 287 | hs.cv = cv*θ | |
| 288 | hs.av .= hs.z.*θ | |
| 289 | hs.z .*= w₂/T | |
| 290 | end | |
| 291 | ||
| 292 | # Solve the 2D system (I/τ+M₀)u = z | |
| 293 | @inline function mldivide_step_plus_sym2x2!(u, M₀, z, τ) | |
| 294 | a = 1/τ+M₀[1, 1] | |
| 295 | c = M₀[1, 2] | |
| 296 | d = 1/τ+M₀[2, 2] | |
| 297 | u .= ([d -c; -c a]*z)./(a*d-c*c) | |
| 298 | end | |
| 299 | ||
| 300 | function horn_schunck_reg_prox!(u::DisplacementConstant, bnext::Image, b::Image, | |
| 301 | θ, λ, T, τ) | |
| 302 | hs=ConstantDisplacementHornSchunckData() | |
| 303 | horn_schunck_reg_prox_op!(hs, bnext, b, θ, λ, T) | |
| 304 | mldivide_step_plus_sym2x2!(u, hs.M₀, (u./τ)-hs.z, τ) | |
| 305 | end | |
| 306 | ||
| 307 | function flow_grad!(x::Image, vtmp::Gradient, u::Displacement; δ=nothing) | |
| 308 | if !isnothing(δ) | |
| 309 | u = δ.*u | |
| 310 | end | |
| 311 | pointwise_gradiprod_2d!(x, vtmp, u, x; add=true) | |
| 312 | end | |
| 313 | ||
| 314 | # Error b-b_prev+⟨⟨u, ∇b⟩⟩ for Horn–Schunck type penalisation | |
| 315 | function linearised_optical_flow_error(u::Displacement, b::Image, b_prev::Image) | |
| 316 | imdim = size(b) | |
| 317 | vtmp = zeros(2, imdim...) | |
| 318 | tmp = b-b_prev | |
| 319 | pointwise_gradiprod_2d!(tmp, vtmp, u, b_prev; add=true) | |
| 320 | return tmp | |
| 321 | end | |
| 322 | ||
| 323 | ############################################## | |
| 324 | # Helper to smooth data for Horn–Schunck term | |
| 325 | ############################################## | |
| 326 | ||
| 327 | function filter_hs(b, b_next, b_next_filt, kernel) | |
| 328 | if kernel==nothing | |
| 329 | f = x -> x | |
| 330 | else | |
| 331 | f = x -> simple_imfilter(x, kernel; threads=true) | |
| 332 | end | |
| 333 | ||
| 334 | # We already filtered b in the previous step (b_next in that step) | |
| 335 | b_filt = b_next_filt==nothing ? f(b) : b_next_filt | |
| 336 | b_next_filt = f(b_next) | |
| 337 | ||
| 338 | return b_filt, b_next_filt | |
| 339 | end | |
| 340 | ||
| 341 | end # Module |