Thu, 18 Apr 2024 10:51:10 +0300
commit before adding PET
5 | 1 | #################################################################### |
2 | # Predictive online PDPS for optical flow with known velocity field | |
3 | #################################################################### | |
4 | ||
5 | __precompile__() | |
6 | ||
7 | module AlgorithmRotation | |
8 | ||
9 | identifier = "pdps_known_rotation" | |
10 | ||
11 | using Printf | |
12 | ||
13 | using AlgTools.Util | |
14 | import AlgTools.Iterate | |
15 | using ImageTools.Gradient | |
16 | ||
17 | using ..OpticalFlow: ImageSize, | |
18 | Image, | |
19 | pdflow! | |
20 | ||
21 | ######################### | |
22 | # Iterate initialisation | |
23 | ######################### | |
24 | ||
25 | function init_rest(x::Image) | |
26 | imdim=size(x) | |
27 | ||
28 | y = zeros(2, imdim...) | |
29 | Δx = copy(x) | |
30 | Δy = copy(y) | |
31 | x̄ = copy(x) | |
32 | ||
33 | return x, y, Δx, Δy, x̄ | |
34 | end | |
35 | ||
36 | function init_iterates(xinit::Image) | |
37 | return init_rest(copy(xinit)) | |
38 | end | |
39 | ||
40 | function init_iterates(dim::ImageSize) | |
41 | return init_rest(zeros(dim...)) | |
42 | end | |
43 | ||
44 | ############ | |
45 | # Algorithm | |
46 | ############ | |
47 | ||
48 | function solve( :: Type{DisplacementT}; | |
49 | dim :: ImageSize, | |
50 | iterate = AlgTools.simple_iterate, | |
51 | params::NamedTuple) where DisplacementT | |
52 | ||
53 | ################################ | |
54 | # Extract and set up parameters | |
55 | ################################ | |
56 | ||
57 | α, ρ = params.α, params.ρ | |
58 | R_K² = ∇₂_norm₂₂_est² | |
59 | γ = 1.0 | |
60 | Λ = params.Λ | |
61 | τ₀, σ₀ = params.τ₀, params.σ₀ | |
62 | ||
63 | τ = τ₀/γ | |
64 | @assert(1+γ*τ ≥ Λ) | |
65 | σ = σ₀*1/(τ*R_K²) | |
66 | ||
67 | println("Step length parameters: τ=$(τ), σ=$(σ)") | |
68 | ||
69 | ###################### | |
70 | # Initialise iterates | |
71 | ###################### | |
72 | ||
73 | x, y, Δx, Δy, x̄ = init_iterates(dim) | |
74 | init_data = (params.init == :data) | |
75 | ||
76 | #################### | |
77 | # Run the algorithm | |
78 | #################### | |
79 | ||
80 | v = iterate(params) do verbose :: Function, | |
81 | b :: Image, | |
82 | v_known :: DisplacementT, | |
83 | 🚫unused_b_next :: Image | |
84 | ||
85 | ################## | |
86 | # Prediction step | |
87 | ################## | |
88 | if init_data | |
89 | x .= b | |
90 | init_data = false | |
91 | end | |
92 | ||
93 | pdflow!(x, Δx, y, v_known) | |
94 | ||
95 | ############ | |
96 | # PDPS step | |
97 | ############ | |
98 | ||
99 | ∇₂ᵀ!(Δx, y) # primal step: | |
100 | @. x̄ = x # | save old x for over-relax | |
101 | @. x = (x-τ*(Δx-b))/(1+τ) # | prox | |
102 | @. x̄ = 2x - x̄ # over-relax | |
103 | ∇₂!(Δy, x̄) # dual step: y | |
104 | @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | | |
105 | proj_norm₂₁ball!(y, α) # | prox | |
106 | ||
107 | ################################ | |
108 | # Give function value if needed | |
109 | ################################ | |
110 | v = verbose() do | |
111 | ∇₂!(Δy, x) | |
112 | value = norm₂²(b-x)/2 + params.α*γnorm₂₁(Δy, params.ρ) | |
113 | value, x, [NaN, NaN], nothing | |
114 | end | |
115 | ||
116 | v | |
117 | end | |
118 | ||
119 | return x, y, v | |
120 | end | |
121 | ||
122 | end # Module | |
123 | ||
124 |